Paz, Cano, Bolaños, Chávez, Marin, and Romero: Factor de la reflectancia bi-cónica en especies vegetales contrastantes: modelación global



Introducción

La clasificación de la vegetación natural usando sensores remotos se ha explorado desde los inicios de la operación comercial de la tecnología satelital, con sensores remotos en el espectro electromagnético de onda corta. Los resultados obtenidos hasta la fecha no han sido lo suficientemente estables y confiables para usarse en forma operacional sólida.

Últimamente, se ha planteado que la información espectral multi-angular mejora las clasificaciones de la vegetación (Bicheron et al., 1997; Asner, 2000; Diner et al., 1999 y 2005); aunque los resultados, en la práctica, muestran solo algunas mejorías en las clasificaciones (Barnsley et al., 1997; Hyman y Barnsley, 1997; Gerard, 2003), donde la separación de clases de vegetación está fuertemente influenciada por las diferencias a nivel espectral y, en menor medida, a nivel angular.

La información multi-angular asociada a la vegetación, geometría sol-sensor, es la base para el desarrollo de sensores operacionales tales como el POLDER, que tiene hasta 14 ángulos de observación y una resolución espacial de 7 km; el sensor ATSR-2 con 2 ángulos de visión y una resolución de 1 km y, el sensor MISR, con 9 ángulos de visión y resolución espacial de 275 m a 1.1 km. Por el sistema de barrido de la superficie terrestre, los sensores AVHRR y MODIS introducen un efecto simultáneo de geometría sol-sensor y escala (el tamaño de los píxeles se incrementa con el ángulo de visión; esto es, los píxeles que se alejan de la línea orbital ortogonal a la superficie incrementan sus dimensiones producto de vistas oblicuas del sensor). En el otro extremo, el sensor MISR mantiene fijas las dimensiones de los píxeles a través de un muestreo de barrido temporal a lo largo de su línea orbital.

Un enfoque teórico de clasificación de la vegetación, actualmente operativo con sensores MODIS y MISR, es el que desarrolló el grupo de la Universidad de Boston (Lotsch et al., 2000; Zhang et al., 2002a y b), en el que la metodología parte de una clasificación de tipos de vegetación usando propiedades geométricas asociadas a la transferencia de radiación típicas de la mezcla suelo-vegetación, para seis biomas distintos (Myneni et al., 1997). Los biomas, definidos por sus propiedades de transferencia de radiación, se usan para condicionar las extracciones de parámetros biofísicos mediante información espectral (Knyazikhin et al., 1998a y b). En una perspectiva teórica y estadística, Zhang et al. (2002a y b), argumentan que la clasificación de la vegetación con información espectral multi-angular debe basarse en principios de consistencia entre las propiedades de transferencia de radiación de las clases y sus firmas espectrales distintivas, manteniendo fija la resolución espacial (problema de mezclas). Los argumentos de estos autores apoyan la hipótesis de firmas espectrales multi-angulares únicas para las clases de vegetación (los seis biomas definidos por Myneni et al., 1997).

En el presente trabajo se utilizó un esquema de modelación global para analizar los patrones angulares de diferentes tipos de vegetación, con arquetipos contrastantes entre sí, para revisar si la información espectral angular puede diferenciar las clases estudiadas. La modelación sigue una jerarquía de caracterización: ángulos cenitales, ángulos acimutales, efecto del suelo y densidad de plantas. En un primer trabajo se utilizó un modelo de los ángulos cenitales de visión e iluminación y se revisó la factibilidad de discriminar la vegetación, concluyéndose que existía una confusión de clasificación en términos de los efectos del suelo y densidad de plantas. Para poder ratificar las conclusiones, en el presente estudio se desarrolló un modelo global que reduce toda la variabilidad a un espacio de dos parámetros.

Materiales y Métodos

Modelación global del sistema suelo-vegetación

Las reflectancias asociadas a un objeto terrestre varían en función de los ángulos cenitales de iluminación y visión (Bolaños y Paz, 2010) y de la diferencia acimutal (Paz y Medrano, 2015) por lo que requieren modelarse en forma compacta para poder analizar la discriminación entre clases de vegetación.

En los últimos tiempos, los modelos de la función de distribución de la reflectancia bidireccional (BRDF, por sus siglas en inglés) que más se usan, son los basados en kernels (funciones matemáticas) que combinan modelos de medios turbios y de óptica geométrica (Wanner et al., 1995). Los modelos semi-empíricos principales de kernels son lineales (Wanner et al., 1995) y no lineales (Rahman et al., 1993). Un modelo de la BRDF requiere de al menos tres parámetros (Engelson et al., 1996): uno relacionado con la amplitud de la señal, otro que defina la dependencia con respecto a los ángulos cenitales solares y de visión y, uno que tome en cuenta las variaciones acimutales. Esto plantea, al menos, el uso de un espacio tri-dimensional para clasificar a la vegetación. En el caso de píxeles individuales de una imagen satelital, los requerimientos de datos de los modelos actuales de la BRDF deben utilizar hipótesis restrictivas (homogeneidad temporal o espacial) para contar con información para caracterizar las BRDF.

La clasificación de la vegetación natural usando modelos de la BRDF se ha realizado a través de los parámetros ajustados en dichos modelos. En el caso de los kernels lineales (isotrópicos, volumétricos y geométricos), los coef icientes ajustados se utilizan para buscar relaciones con la cobertura aérea y estructura (altura, composición, etc.) para diferentes tipos de vegetación (Gerard y North, 1997; Lovell y Graetz, 2002; Gao et al., 2003). Aunque los resultados de estos estudios muestran relaciones congruentes, del tipo de tendencias generales, entre los parámetros de los modelos de kernels lineales de la BRDF y la estructura de la vegetación, presentan confusión en las clasificaciones y errores de estimación altos en las variables asociadas a las clases de vegetación. Con el modelo no lineal de la BRDF de Rahman et al. (1993), Pinty et al. (2002) y Gobron et al. (2002) proponen que el parámetro k puede usarse para discriminar tipos de vegetación con fondos muy reflectivos (nieve o desierto), de tal manera que la forma de la BRDF se puede caracterizar en función de que sea cóncava (k > 1), convexa (k < 1) o lineal (k = 1).

Modelación del ángulo cenital de iluminación y visión

En Paz y Medrano (2015) se planteó el uso de un modelo de los ángulos cenitales de visión e iluminación de un solo parámetro, lo que redujo la complejidad de los esquemas de clasificación de la vegetación.

Si se define el vector de visión Ω(θv, Øv) y el de iluminación Ω’(θs, ϕs), donde θ es un ángulo cenital y Ø el acimutal, con v como visión y s iluminación solar, el modelo definido por Bolaños y Paz, 2010 está dado por:

(1)
2395-8030-tl-36-01-61-e1.png

donde se utiliza un valor de a = 90 para obtener un punto adicional y poder estimar b con un esquema similar al del IRC del modelo de Bolaños et al. (2007). El uso de la función cos(χ), como factor multiplicativo de R, permite definir un punto del patrón Rn-χ, ya que cos (90°) = 0, por lo que Rn = 0 en χ = 90° (θv = θs; es decir, el plano del Hot Spot). El ángulo θv no tiene signo.

Modelación de la diferencia angular acimutal

Si se considera la notación de ángulos acimutales positivos, en la dirección contraria a las manecillas del reloj, Paz y Bolaños (2006)1 desarrollaron un modelo general de la BRDF que considera al parámetro b de los efectos de los ángulos cenitales de visión e iluminación:

(2)
2395-8030-tl-36-01-61-e2.png

El modelo de las relaciones (1) sigue el mismo esquema que el de las (2), donde ( es una variable de posición que hace simétricos los patrones de b. Los ángulos cenitales θs (Hot Spot) se consideran en término de sus posiciones: plano (semi-hemisferio) de iluminación y sombreado.

De los modelos de las relaciones (1) y (2), es claro que para conocer la BRDF en forma total solo se requiere conocer el parámetro B, lo que simplifica todo el modelo en la forma más compacta posible: un solo parámetro. Esto permite el análisis de las firmas espectrales multi-angulares en forma muy simple.

Modelación del efecto del suelo y la densidad del follaje

En la Figura 1 se muestra el espacio espectral R-IRC del patrón temporal de crecimiento de un cultivo de maíz, representado por curvas de igual índice de área foliar o IAF (iso-IAF). La Figura 1 se generó con el uso de seis tipos de suelos (S2, S5, S7, S9, S11 y S12; del más oscuro al más claro). Paz et al. (2005) detallan las simulaciones radiativas que se muestran en la Figura 1.

Figura 1:

Espacio espectral IRC-R para las simulaciones del cultivo de maíz.

2395-8030-tl-36-01-61-gf1.png

El análisis de la Figura 1 define varios patrones muy importantes para entender el comportamiento de la reflectancia durante el desarrollo de los cultivos:

  • a) Si se unen los valores de igual IAF (iso-IAF) de cada curva de igual suelo (iso-Suelo), se obtiene un patrón cuasi-lineal.

  • b) La pendiente e intersección de las líneas rectas de iso-IAF varían con el valor del IAF, como se observa en la Figura 1. La inclinación (pendiente) de las rectas de iso-IAF parte desde una pendiente igual a la de la línea del suelo (IAF = 0) y aumenta hasta alcanzar un ángulo de 90° en el sentido contrario a las manecillas del reloj. Esta última condición corresponde al caso de saturación de la reflectancia de la banda del R, que se representa en la Figura 1 como los valores de reflectancia arriba del ápice del “sombrero de tres picos” (IAF > 5 en la Figura 1). Los patrones de los espacios espectrales IRC-Visible (azul, verde y rojo) son similares para todas las bandas del espectro visible, dado que hay una relación lineal entre estas bandas.

  • c) Todas las curvas de iso-Suelos convergen al mismo punto de saturación de las bandas visibles. En realidad, el sombrero de tres picos tiene una línea recta como ápice, ya que cuando una banda visible se satura, el IRC no lo hace y sigue creciendo hasta su propio punto de saturación. Esta propiedad es importante para el diseño de algoritmos de índices de la señal del suelo y de la vegetación y, refleja la condición física de falta de visibilidad del suelo (relativo a cada banda espectral) y solo se observa la vegetación. El punto de saturación, llamado también de reflectancia infinita o de medio ópticamente denso, es función del espectro de las hojas y de su distribución angular.

Las curvas iso-IAF de la Figura 1 se pueden describir como:

(3)
2395-8030-tl-36-01-61-e3.png

donde el subíndice IAF se refiere a un valor específico del IAF de la mezcla suelo-vegetación. Los parámetros de la recta definida por la ecuación (3), a0,IAF (en porcentaje para el caso actual) y b0,IAF (adimensional), dependen del valor de IAF. En lo que sigue se omitirá el subíndice IAF en R e IRC.

En la Figura 2 se muestra la relación entre los parámetros a0,IAF y b0,IAF de la Figura 1 (Paz et al., 2007) para el ciclo de crecimiento del cultivo maíz simulado, que va desde el suelo desnudo hasta la condición de cobertura completa del suelo por la vegetación. En la Figura 2 se observa que en la etapa inicial hay un patrón de comportamiento tipo exponencial, hasta un punto donde la banda R se satura (no cambia de valor). Después del punto de saturación de la banda R, el patrón es del tipo lineal. El punto inicial de la curva a0,IAF-b0,IAF (Figura 1) representa el caso de suelo desnudo (a0,IAF=0 = aS y b0,IAF=0 = bS). El punto donde a0,IAF alcanza su valor máximo (punto de transición del patrón exponencial al lineal), representa el final de la fase de crecimiento exponencial y el inicio de la fase lineal. El punto final del patrón lineal de la curva a0,IAF-b0,IAF representa la situación donde la banda del IRC se satura, lo que ocurre cuando el IAF alcanza su valor máximo. En la misma Figura 2 se muestra una transformación (b0,IAF → 1/b0,IAF) que hace aproximadamente lineal la función expo-lineal observada. Esta transformación se eligió para modelar en forma adecuada la transición entre la fase exponencial y lineal.

Figura 2:

Patrón entre los patrones a0,IAF y b0,IAF de las curvas iso-IAF.

2395-8030-tl-36-01-61-gf2.png

En el caso de la información espectral multi-angular, el esquema de modelación propuesto consiste en generar curvas iso-IAF multi-angulares (densidad de plantas o cobertura aérea) del espacio de los parámetros [B de R] contra [B de IRC] (similar al espacio del R-IRC de la Figura 1):

(4)
2395-8030-tl-36-01-61-e4.png

donde α y β son los parámetros de la ecuación.

En el espacio meta-paramétrico α-β (espacio de parámetros), lineal, se puede modelar el patrón del crecimiento de la vegetación (incremento del IAF o cobertura aérea) con un modelo (similar al esquema de la Figura 2):

(5)
2395-8030-tl-36-01-61-e5.png

de tal forma que toda la información multi-angular asociada al sistema suelo-vegetación (efecto del suelo y del follaje) queda compactada en un espacio supra-paramétrico (parámetros del espacio meta-paramétrico) AA-BB. De esta forma es posible analizar la viabilidad de discriminar clases de vegetación en forma compacta.

Experimentos bajo condiciones controladas de laboratorio

La discriminación de clases de vegetación a través de información espectral multi-angular se analizó mediante un experimento bajo condiciones controladas de laboratorio, en donde se simularon diferentes configuraciones geométricas de especies vegetales con arquetipos contrastantes. Para esto se utilizaron plantas pequeñas en las especies arbóreas y arbustivas y, plantas adultas, para pastizales, después de podarse. En el Cuadro 1 se muestran las características principales de las plantas que se emplearon en los experimentos, en donde se consideran especies con diferentes tipos de hoja.

Cuadro 1:

Características de las especies vegetales usadas en el experimento.

Nombre científico Nombre común Tipo de hoja Altura Diámetro del tallo Diámetro del dosel
- - - - - - - - - - - - - - - - - - cm - - - - - - - - - - - - - - - - - -
Abies religiosa Oyamel Aciculada 34.34 (5.33) 0.70 (0.14) 24.26 (6.44)
Acacia retinodes Mimosa Ancha 38.88 (7.80) 0.64 (0.15) 26.09 (6.17)
Casuarina equisetifolia Casuarina Aciculada 36.67 (3.85) 0.64 (0.17) 23.87 (5.97)
Quercus rugosa Encino Ancha 33.83 (6.45) 0.60 (0.27) 20.17 (5.05)
Fraxinus uhdei Fresno Ancha 31.08 (5.11) 0.60 (0.14) 20.74 (4.30)
Eysenhardtia polystachya Palo dulce Ancha - micro 25.29 (10.7) 1.99 (1.42) 15.90 (5.17)
Pinus greggii Pino Aciculada 33.49 (4.35) 0.60 (0.09) 14.13 (2.29)
Bouteloa gracilis Navajita Lineal 18.31 (3.20) 2.55 (1.17) 14.02 (4.73)

[i] Los datos entre paréntesis son las desviaciones estándar.

Las plantas individuales de cada especie, con mínimo estrés, se colocaron en bolsas de plástico y se acomodaron en tres densidades de acuerdo con los arreglos que se muestran en la Figura 3. Los arreglos de plantas se colocaron en un cajón de madera de 1.5 × 1.5 m, con un sistema de mallas de 15 × 15 cm, para la colocación de las plantas individuales en bolsas de plástico, de tal manera que no se inclinaran al apoyarse sobre el fondo del cajón.

Figura 3:

Simulaciones de configuraciones geométricas. Densidades usadas: a) alta, 49 plantas, b) media, 25 plantas y c) baja, 12 plantas. Cada círculo relleno representa la posición de una planta y los cuadros perimetrales más claros solo contienen suelo. El círculo al centro de los cuadros corresponde al área de visión del sensor hiperespectral con un ángulo de visión a nadir.

2395-8030-tl-36-01-61-gf3.jpg

Para analizar el efecto del fondo de los arreglos de plantas, arriba de la malla superior del cajón se colocaron tiras de madera a la altura del inicio de los tallos de las plantas y sobre estas tiras, selladas en los tallos, se colocó suelo previamente seleccionado y con una granulometría menor a 2 mm.

El cajón de madera con los arreglos de plantas forma parte del sistema goniométrico (SIGO-CP) de medición de reflectancias multi-angulares que se diseñó (Cano et al., 2014). A nadir, el radiómetro hiperespectral (350 a 2 500 nm) usado (modelo FR Jr de ASDMR) mide un área circular de diámetro 0.41 m. El radiómetro tiene un campo instantáneo de visión de 25º. Adicionalmente al radiómetro, se montaron en el SIGO-CP una cámara fotográfica digital (Cybershot DSC-V1 de SonyMR) y un termómetro de radiación (modelo ITRS de ApogeeMR); instrumentos que se usaron para realizar mediciones cenitales a intervalos de 10º, desde 0º a 60º, en las direcciones acimutales de 0º a 350º, con intervalos de 10º. La dirección acimutal de 0-360º de medición coincide con el acimut de la fuente de iluminación, por lo que las direcciones acimutales representan, en realidad, diferencias acimutales en la convención de 0-360º. La fuente de iluminación utilizada fue un reflector de aluminio de cuerpo negro de la marca Tecno LiteMR equipado con una lámpara de halógeno de cuarzo de 500 watts de la marca OsramMR (modelo 64706). Los filamentos de estas lámparas son de tungsteno y el vidrio que recubre el filamento está hecho de cuarzo, siendo el halógeno el gas que rellena el tubo o bombilla. La lámpara se montó en una base telescópica elevada a 3 m y su ángulo cenital (θs) fue de 38º. Estas condiciones de iluminación se mantuvieron constantes para todas las mediciones de las especies vegetales analizadas.

Los suelos se colocaron sobre las tiras de madera a la altura del inicio de los tallos de las plantas, con un espesor de 1 cm. En cada suelo se consideraron dos condiciones de humedad: suelo secado al aire y suelo húmedo producto de un evento de precipitación. Para este último caso se utilizó un simulador de lluvias tipo Morin (Morin et al., 1967), donde el cajón del SIGO-CP con el arreglo de plantas se transportó a la base del simulador en el área experimental y se le aplicó un evento de precipitación con un disco de 75 mm durante 5 minutos con la llave del simulador abierta al máximo, lo cual aportó una lámina de precipitación de 8.3 mm. El evento de precipitación se utilizó para analizar el efecto de la lluvia en el suelo del fondo de la vegetación, inmediatamente después del evento. La reflectancia del suelo después de aplicar un evento de precipitación se incrementó en proporción a la energía de las gotas de lluvia (Goldshleger et al., 2002). Adicionalmente, tal como se discute más adelante, el agua residual en las hojas de las plantas introduce errores en las mediciones del sistema suelo-vegetación, por lo cual los patrones de su BRDF resultan más erráticos que los de suelo secos.

En la Figura 4 se muestra la geometría de medición para el radiómetro montado en el arco cenital del SIGO-CP (Cano et al., 2014), en donde el área de visión para ángulos cenitales, no de nadir, forma una elipse cuyo centro está desplazado del centro del cajón.

Figura 4:

Áreas de visión del SIGO-CP a nadir: a) θv de 0º a 30º y b) θv de 30º a 60º.

2395-8030-tl-36-01-61-gf4.png

En términos de la definición de la BRDF (Nicodemus et al., 1977), ésta implica ángulos sólidos infinitesimales por lo que no puede medirse en la práctica. El arreglo de medición de reflectancias en condiciones de laboratorio, que se discutió anteriormente, implica la caracterización de los factores de reflectancia bi-cónicos o cónico-cónico (CCRF por sus siglas en inglés) (Nicodemus et al., 1977; Schaepman-Strub et al., 2006), donde el termino cónico se usa para el ángulo sólido (iluminación y visión). Las mediciones de reflectancia del radiómetro hiperespectral se refieren en realidad a factores de reflectancia, los cuales se calculan en función de las propiedades ópticas de un panel de referencia (Hatchell, 1999).

El área del experimento se aisló con paños de tela negra y el techo se pintó de color negro para evitar contribuciones de radiación difusa y aproximar una fuente de iluminación con un ángulo cónico de solo radiación directa.

Ahora bien, de la Figura 3, la CCRF medida incorpora factores de escala (áreas de medición diferentes en función del ángulo cenital de visión), por lo que se debe usar una definición generalizada, en la que se considere la parte espacial del área de medición (Di Girolamo, 2003). Los cambios en las dimensiones de los píxeles con los ángulos de visión se presentan en los sensores AVHRR y MODIS, por lo que es importante considerar en forma explícita esta situación. En este caso, al considerar una relación exponencial entre las reflectancias y los IAF (Ross, 1981) como elementos de escala, se utilizó una nueva definición de reflectancias normalizadas: Rn = ln(R)cos(χ), ecuaciones (1), dejando igual el modelo de la BRDF (CCRF).

El procedimiento general de determinación de los factores de reflectancia, para cada especie en particular, sigue protocolos estándar de mediciones radiométricas.

Adicionalmente, se realizaron conjuntos completos de mediciones para el caso de suelo desnudo (suelos claro y oscuro, en condiciones secas y mojadas al aplicar un evento de precipitación con el simulador de lluvias). En cada conjunto de medición del arreglo de plantas de las especies se tomaron fotografías digitales para estimar la cobertura aérea (COB) mediante un proceso de clasificación supervisada.

Finalmente, las mediciones de reflectancia que se generaron (archivo de 350 a 2 500 nm, remuestreado a intervalos de 2 nm) se convirtieron a las reflectancias de las bandas del sensor Landsat 5, con las funciones de respuesta correspondientes (https://landsat.gsfc.nasa.gov/spectral-response-of-the-multispectral-scanner-system-in-band-band-average-relative-spectral-response/). Las reflectancias para las bandas Landsat 5 son simplemente el promedio de las mediciones generadas multiplicadas por la función de respuesta de la banda. Las bandas del azul y del infrarrojo medio no se analizaron debido a problemas relacionados con efectos de la atmósfera del área del experimento (vapor de agua) y de estabilidad del radiómetro, por lo que en lo siguiente solo se muestran los resultados de las bandas del verde (V), rojo (R) e infrarrojo cercano (IRC).

Los datos generados en el experimento se guardaron en archivos etiquetados con 4 dígitos: primer dígito: especie vegetal, segundo dígito: densidad del arreglo de plantas; tercer dígito: color del suelo y, cuarto dígito: humedad del suelo. El Cuadro 2 muestra la codificación, de tal manera que un código 2121 significa planta Mimosa, densidad alta, color oscuro y seco.

Cuadro 2:

Codificación de los archivos del experimento.

Nombre común especie Código Densidad plantas Código Color del suelo Código Humedad del suelo Código
Suelo 0 Nula 0 Claro 1 Seco 1
Oyamel 1 Alta 1 Oscuro 2 Mojado 2
Mimosa 2 Media 2
Casuarina 3 Baja 3
Encino 4
Fresno 5
Palo dulce 6
Pino 7
Navajita 8

En el caso de las coberturas aéreas, el Cuadro 3 muestra las estimaciones que se realizaron en las fotografías digitales, en donde COB global se refiere a la cobertura de todo el cuadro de medición (sin los cuadros del borde) del cajón del SIGO-CP y COB local nadir es la cobertura del área del círculo de medición del radiómetro a nadir (41.2 × 41.2 cm).

Cuadro 3:

Coberturas aéreas asociadas a las densidades de plantas.

Código Nombre común especie Densidad COB Global COB local nadir
- - - - - % - - - - -
11 Oyamel Alta 60.9 71.2
12 Oyamel Media 37.1 56.3
13 Oyamel Baja 25.0 28.2
21 Mimosa Alta 56.2 65.5
22 Mimosa Media 36.6 38.0
23 Mimosa Baja 25.7 24.1
31 Casuarina Alta 71.3 50.1
32 Casuarina Media 30.6 33.5
33 Casuarina Baja 25.5 18.0
41 Encino Alta 74.0 68.8
42 Encino Media 43.0 45.2
43 Encino Baja 31.2 27.7
51 Fresno Alta 60.8 61.3
52 Fresno Media 37.3 40.4
53 Fresno Baja 21.7 25.3
61 Palo Dulce Alta 45.7 41.3
62 Palo Dulce Media 28.6 21.0
63 Palo Dulce Baja 20.7 11.0
71 Pino Alta 53.1 55.6
72 Pino Media 23.3 26.9
73 Pino Baja 12.2 11.4
81 Navajita Alta 26.6 44.3
82 Navajita Media 30.5 30.2
83 Navajita Baja 18.0 18.4
00 Suelo Nula 0.0 0.0

Resultados y Discusión

Ajuste de los modelos de ángulos cenitales y acimutales

En la Figura 5 se muestran los ajustes del modelo de los ángulos cenitales de visión e iluminación para las reflectancias de las bandas del verde (V), rojo (R) e infrarrojo cercano (IRC) para las ocho especies, más el suelo desnudo. El error relativo medio general fue de 6.8%, aceptable si se considera la diversidad de especies analizadas. El error relativo medio (ERM), en porcentaje, está definido por:

(6)
2395-8030-tl-36-01-61-e6.png

donde med se refiere a medida, est a estimada y R a reflectancia de la banda del V, R e IRC.

Figura 5:

Ajuste del modelo de los ángulos cenitales para las bandas del V, R e IRC.

2395-8030-tl-36-01-61-gf5.jpg

La Figura 6 muestra un diagrama acimutal de los parámetros b para las bandas del R e IRC, sin considerar las diferencias acimutales de 0º y 180º, por problemas de sombreado del área de visión por el goniométro, el caso de un suelo claro seco y mojado; para coberturas aéreas a nadir mayores 61%. La Figura 7 muestra esta misma información para coberturas entre 45 y 55%; y la Figura 8 para el caso de coberturas entre el 18 y 28%.

Figura 6:

Diagramas acimutales de las bandas del R e IRC para un suelo claro seco y húmedo, con cobertura aérea a nadir mayor del 61%. (Códigos mostrados en el Cuadro 2).

2395-8030-tl-36-01-61-gf6.png

Figura 7:

Diagramas acimutales de las bandas del R e IRC para un suelo claro seco y húmedo, con cobertura aérea a nadir entre el 45 y 55%. (Códigos mostrados en el Cuadro 2).

2395-8030-tl-36-01-61-gf7.png

Figura 8:

Diagramas acimutales de las bandas del R e IRC para un suelo claro seco y húmedo, con cobertura aérea a nadir entre el 18 y 28%. (Códigos mostrados en el Cuadro 2).

2395-8030-tl-36-01-61-gf8.png

Si se analizan los valores del parámetro b, se puede concluir, en lo general, que hay zonas de confusión (traslape) entre especies, que dependen de las propiedades ópticas de los suelos. Esto es particularmente crítico en las pendientes b de la banda del IRC, donde existe menor contraste entre los parámetros b. En el caso de la banda del R, el contraste es mayor; aunque mantiene los problemas de confusión en la discriminación de clases.

La Figura 9 muestra el peor ajuste del modelo de las diferencias acimutales, relaciones (2), que se refiere al caso de especie Encino con fondo de suelo oscuro y mojado, para la banda del V. En esa misma figura se muestra el ajuste del modelo para la banda del IRC (menos anisotrópico por efecto de interacciones múltiples de la radiancia). En lo general, los ajustes del modelo de las diferencias acimutales resulto en R2 ≥ 0.99.

Figura 9:

Peor ajuste del modelo de las diferencias acimutales para todas las especies y suelos.

2395-8030-tl-36-01-61-gf9.png

Ajuste de los modelos del efecto del suelo y del follaje

En la Figura 10 se muestra las curvas iso-IAF multi-angulares (cuatro tipos de propiedades ópticas de los suelos del fondo de la vegetación), espacio multi-angular del R-IRC, para el caso de la planta Mimosa (especie 2), en donde en cada curva se ajustó al modelo lineal de la relación (4) para su análisis en el espacio α-β. En el caso del espacio multi-angular del R-IRC, los problemas de vegetación y suelo mojados se agudizan por tener patrones angulares sujetos a diferentes tipos de interacción de la radiancia (predominio de las simples y las múltiples). Para reducir esa clase de efectos, se desecharon los datos de coberturas mayores al 60% para los casos de vegetación y suelo mojados.

Figura 10:

Patrones multi-angulares de los espacios B del R - B del IRC y α-β para la especie 2.

2395-8030-tl-36-01-61-gf10.png

En el caso de las bandas del visible, los efectos del mojado de la vegetación y suelo (interacciones simples) se presentan en todas las bandas, por lo que no es necesario eliminar datos con patrones diferentes. La Figura 11 muestra la situación de modelación para las bandas del V y del R.

Figura 11:

Patrones multi-angulares de los espacios B del V - B del R y α-β para la especie 2.

2395-8030-tl-36-01-61-gf11.png

En lo general, los patrones ajustados del modelo de la relación (4) y (5) muestran valores de R2 ≥ 0.99. Así, la modelación de las mediciones multi-angulares de las reflectancias puede compactarse al caso de dos parámetros (AA y BB de la relación 5).

Modelo global ajustado y discriminación de especies

De acuerdo con la relación (5), en el espacio supra-paramétrico (parámetros de las relaciones meta-paramétricas) AA-BB se pueden sintetizar los efectos multi-angulares del suelo y del follaje. El uso de este espacio permite analizar la posible discriminación de las especies, sujeto a variaciones del fondo de suelo, geometría sol-sensor y cobertura del follaje.

En la Figura 12 se muestra el espacio AA-BB para el caso de los patrones asociados a las bandas del R e IRC y en la Figura 13 la de las bandas del V y R.

Figura 12:

Espacio supra-paramétrico AA-BB para las bandasdel R e IRC. (Códigos mostrados en el Cuadro 2).

2395-8030-tl-36-01-61-gf12.png

Figura 13:

Espacio supra-paramétrico AA-BB para las bandas del V y R. (Códigos mostrados en el Cuadro 2).

2395-8030-tl-36-01-61-gf13.png

Aunque las Figuras 12 y 13 muestran patrones separables de la información multi-angular para las distintas especies analizadas, los valores de los supra-parámetros AA y BB están muy cercanos entre sí, por lo que las clases de vegetación resultan difíciles de discriminar en términos operativos.

Por otro lado, las posiciones de los patrones AA-BB para las distintas especies no muestran una coherencia (en apariencia) con relación a las propiedades ópticas y angulares del follaje de las especies analizadas (Cuadro 1).

Conclusiones

  • - Los resultados muestran que las clases de vegetación analizadas resultan en confusión (traslapes), por lo que la información multi-angular tiene una contribución relativamente baja para discriminar entre especies, esto bajo la perspectiva de considerar simultáneamente geometría sol-sensor, propiedades ópticas diferentes de los suelos debajo de la vegetación y condiciones de humedad diferente, así como coberturas (densidades) del follaje. Estas consideraciones difieren de los estudios clásicos de discriminación que consideran en lo general uno o dos factores.

  • - La conclusión aparente de discriminaciones relativamente pobres en el espacio supra-paramétrico propuesto está basada en las distancias pequeñas entre los puntos que representan a las especies. No obstante, esta situación, es necesario enfatizar que cada punto representa múltiples variaciones de los factores analizados, por lo que la posible confusión en las discriminaciones en función de distancias pequeñas de separación de las clases requiere de una revisión bajo la óptica de definir, en términos operativos, las implicaciones de estas distancias.

  • - Es necesario realizar otros tipos de modelaciones: relación entre los parámetros B y las reflectancias a nadir y efecto multi-angular en las curvas iso-IAF de acuerdo con el esquema planteado en Paz et al. (2007). No obstante, esto, el hecho de modelar en forma completa los efectos multi-angulares de las reflectancias con un solo parámetro (B), requiriendo un solo dato (aplicable a nivel pixeles individuales, sin ninguna hipótesis de homogeneidad o estacionariedad), plantea un camino para fusionar información multi-angular con la determinada a nadir por satélites no-angulares.

Literatura Citada

1 

Asner, G. P. 2000. Contributions of multi-view angle remote sensing to land-surface and biogeochemical research. Remote Sens. Rev. 18: 137-162.

G. P. Asner 2000Contributions of multi-view angle remote sensing to land-surface and biogeochemical researchRemote Sens. Rev.18137162

2 

Barnsley, M. J., D. Allison, and P. Lewis. 1997. On the information content of multiple view angle (MVA) images. Int. J. Remote Sens. 18: 1937-1960.

M. J. Barnsley D. Allison P. Lewis 1997On the information content of multiple view angle (MVA) imagesInt. J. Remote Sens.1819371960

3 

Bicheron, P., M. Leroy, O. Hautecoeur, and F. M. Bréon. 1997. Enhanced discrimination of boreal forest covers with direccional reflectances from the airborne polarization and directionality of earth reflectances (POLDER) instrument. J. Geophys. Res. 102: 29517-29528.

P. Bicheron M. Leroy O. Hautecoeur F. M. Bréon 1997Enhanced discrimination of boreal forest covers with direccional reflectances from the airborne polarization and directionality of earth reflectances (POLDER) instrumentJ. Geophys. Res.1022951729528

4 

Bolaños, M., F. Paz, E. Palacios, E. Mejía y A. Huete. 2007. Modelación de los efectos de la geometría sol-sensor en la reflectancia de la vegetación. Agrociencia 41: 527-537.

M. Bolaños F. Paz E. Palacios E. Mejía A. Huete 2007Modelación de los efectos de la geometría sol-sensor en la reflectancia de la vegetaciónAgrociencia41527537

5 

Bolaños, M. yF. Paz . 2010. Modelación general de los efectos de la geometría iluminación-visión en la reflectancia de pastizales. Rev. Mex. Cienc. Pecu. 1: 349-361.

M. Bolaños F. Paz 2010Modelación general de los efectos de la geometría iluminación-visión en la reflectancia de pastizalesRev. Mex. Cienc. Pecu.1349361

6 

Cano, A., F. Paz , A. Zarco, M. I. Marín, E. López, J. Chávez, M. Bolaños y J. L. Oropeza. 2014. Diseño de un sistema goniométrico con tres grados de libertad para medir reflectancias en el sistema suelo-vegetación. Terrra Latinoamericana 32: 59-68.

A. Cano F. Paz A. Zarco M. I. Marín E. López J. Chávez M. Bolaños J. L. Oropeza 2014Diseño de un sistema goniométrico con tres grados de libertad para medir reflectancias en el sistema suelo-vegetaciónTerrra Latinoamericana325968

7 

Di Girolamo, L. 2003. Generalizing the def inition of the bi-directional reflectance distribution function. Remote Sens. Environ. 88: 479-482.

L. Di Girolamo 2003Generalizing the def inition of the bi-directional reflectance distribution functionRemote Sens. Environ.88479482

8 

Diner, D. J., B. H. Braswell, R. Davies, N. Gobron, J. Hu, Y. Jin, R. A. Khan, Y. Knyazikhin, N. Loeb, J. P. Muller, A. W. Nolin, B. Pinty, C. B. Schaaf, G. Seiz, and J. Stroeve. 2005. The value of multiangle measurements for retrieving structurally and radiatively consistent properties of clouds, aerosols, and surfaces. Remote Sens. Environ. 97: 495-518.

D. J. Diner B. H. Braswell R. Davies N. Gobron J. Hu Y. Jin R. A. Khan Y. Knyazikhin N. Loeb J. P. Muller A. W. Nolin B. Pinty C. B. Schaaf G. Seiz J. Stroeve 2005The value of multiangle measurements for retrieving structurally and radiatively consistent properties of clouds, aerosols, and surfacesRemote Sens. Environ.97495518

9 

Diner, D. J. , G. P. Asner, R. Davies , Y. Knyazhikin, J. P. Muller , A.W. Nolin, B. Pinty , C. B. Schaaf , andJ. Stroeve . 1999. New directions in earth observing: Scientif ic applications of multiangle remote sensing. Bull. Metereol. Soc. 80: 2209-228.

D. J. Diner G. P. Asner R. Davies Y. Knyazhikin J. P. Muller A.W. Nolin B. Pinty C. B. Schaaf J. Stroeve 1999New directions in earth observing: Scientif ic applications of multiangle remote sensingBull. Metereol. Soc.8022092228

10 

Engelson, O., B. Pinty , M. M. Verstraete, and J. V. Martonchik. 1996. Parametric bidirectional reflectance factor models: Evaluation, improvements and applications. Joint Research Centre (Europan Comission). Catalogue: CL-NA16426-EN-C. Ispra, Italy.

O. Engelson B. Pinty M. M. Verstraete J. V. Martonchik 1996Parametric bidirectional reflectance factor models: Evaluation, improvements and applications. Joint Research Centre (Europan Comission)Catalogue: CL-NA16426-EN-CIspraItaly

11 

Gao, F., C. B. Schaaf , A. H. Strhler, Y. Jin , and X. Li. 2003. Detecting vegetation structure using kernel-based BRDF model. Remote Sens. Environ. 86: 198-205.

F. Gao C. B. Schaaf A. H. Strhler Y. Jin X. Li 2003Detecting vegetation structure using kernel-based BRDF modelRemote Sens. Environ.86198205

12 

Gerard, F. 2003. Single angle, dual angle and multi-temporal viewing: Assessing through modelling the implications for forest structure variable extraction. Int. J. Remote Sens. 24: 1317-1334.

F. Gerard 2003Single angle, dual angle and multi-temporal viewing: Assessing through modelling the implications for forest structure variable extractionInt. J. Remote Sens.2413171334

13 

Gerard, F. F. and P. R. J. North. 1997. Analyzing the effect of structural variability and canopy gaps on forest BRDF using a geometric-optical model. Remote Sens. Environ. 62: 46-63.

F. F. Gerard P. R. J. North 1997Analyzing the effect of structural variability and canopy gaps on forest BRDF using a geometric-optical modelRemote Sens. Environ.624663

14 

Gobron N., B. Pinty , M.M. Verstraete, J. L. Widlowski, and D. J. Diner. 2002. Uniqueness of multiangular measurements. II: Joint retrieval of vegetation structure and photosynthetic activity from MISR. IEEE Trans. Geosci. Remote Sens. 40: 1574-1592.

N. Gobron B. Pinty M.M. Verstraete J. L. Widlowski D. J. Diner 2002Uniqueness of multiangular measurements. II: Joint retrieval of vegetation structure and photosynthetic activity from MISRIEEE Trans. Geosci. Remote Sens.4015741592

15 

Goldshleger, N., E. Ben-Dor, Y. Benyamini, D. Blumberg, and M. Agassi. 2002. Spectral properties and hydraulic conductance of soil crusts formed by raindrop impact. Int. J. Remote Sens. 23: 3909-3920.

N. Goldshleger E. Ben-Dor Y. Benyamini D. Blumberg M. Agassi 2002Spectral properties and hydraulic conductance of soil crusts formed by raindrop impactInt. J. Remote Sens.2339093920

16 

Hatchell, D. C. 1999. Analytical Spectral Devices, Inc. Technical guide. Boulder, CO, USA.

D. C. Hatchell 1999Analytical Spectral Devices, Inc. Technical guideBoulder, CO, USA

17 

Hyman, A. H. and M. J. Barnsley. 1997. On the potential for land cover mapping from multiple-view-angle (MVA) remotely-sensed images. Int. J. Remote Sens. 18: 2471-2475.

A. H. Hyman M. J. Barnsley 1997On the potential for land cover mapping from multiple-view-angle (MVA) remotely-sensed imagesInt. J. Remote Sens.1824712475

18 

Knyazikhin, Y., J. V. Martonchik , D. J. Diner , R. B. Myneni, M. Verstraete, B. Pinty , andN. Gobron . 1998a. Estimation of vegetation canopy leaf area index and fraction of absorbed photosyntheticallly active radiation from atmosphere-correct MISR data. Theory J. Gephys. Res. 103: 32239-32256.

Y. Knyazikhin J. V. Martonchik D. J. Diner R. B. Myneni M. Verstraete B. Pinty N. Gobron 1998Estimation of vegetation canopy leaf area index and fraction of absorbed photosyntheticallly active radiation from atmosphere-correct MISR dataTheory J. Gephys. Res.1033223932256

19 

Knyazikhin, Y. , J. V. Martonchik , R. B. Myneni , D. J. Diner , and S. W. Running. 1998b. Synergistic algorithm for estimating vegetation canopy leaf area index and fraction of absorbed photosynthetically active radiation from MODIS and MISR data. Theory J. Gephys. Res. 103: 32257-32275.

Y. Knyazikhin J. V. Martonchik R. B. Myneni D. J. Diner S. W. Running 1998Synergistic algorithm for estimating vegetation canopy leaf area index and fraction of absorbed photosynthetically active radiation from MODIS and MISR dataTheory J. Gephys. Res.1033225732275

20 

Lotsch, A., Y. Tian, M.A. Friedl, andR. B. Myneni . 2000. Land cover mapping in support of LAI and FAPAR retrievals from EOS-MODIS and MISR: Classification methods and sensitivities to errors. Int. J. Remote Sens. 24: 1997-2016.

A. Lotsch Y. Tian M.A. Friedl R. B. Myneni 2000Land cover mapping in support of LAI and FAPAR retrievals from EOS-MODIS and MISR: Classification methods and sensitivities to errorsInt. J. Remote Sens.2419972016

21 

Lovell, J. L. and R. D. Graetz. 2002. Analysis of POLDER-ADEOS data for the Australian continent: The relationship between BRDF and vegetation structure. Int. J. Remote Sens. 23: 2767-2796.

J. L. Lovell R. D. Graetz 2002Analysis of POLDER-ADEOS data for the Australian continent: The relationship between BRDF and vegetation structureInt. J. Remote Sens.2327672796

22 

Morin, J., D. Goldberg, and I. Seginer. 1967. A Rainfall simulator with a rotating disk. Trans. ASAE 10: 74-79.

J. Morin D. Goldberg I. Seginer 1967A Rainfall simulator with a rotating diskTrans. ASAE107479

23 

Myneni, R. B., R. Ramakrishna, R. R. Nemani, andS. W. Running . 1997. Estimation of global leaf area index and absorbed PAR using radiative transfer models. IEEE Trans. Geosci. Remote Sens. 35: 1380-1393.

R. B. Myneni R. Ramakrishna R. R. Nemani S. W. Running 1997Estimation of global leaf area index and absorbed PAR using radiative transfer modelsIEEE Trans. Geosci. Remote Sens.3513801393

24 

Nicodemus, F. E., J. C. Richmond, J. J. Hsia, I. W. Ginsberg, and T. Limperis. 1977. Geometrical considerations and nomenclature for reflectance. NBS Monograph 160. U. S. Department of Commerce. Washington, DC, USA.

F. E. Nicodemus J. C. Richmond J. J. Hsia I. W. Ginsberg T. Limperis 1977Geometrical considerations and nomenclature for reflectanceNBS Monograph 160U. S. Department of CommerceWashington, DC, USA

25 

Paz, F., E. Palacios , E. Mejía , M. Martínez y L. A. Palacios. 2005. Análisis de los espacios espectrales de la reflectividad del follaje de los cultivos. Agrociencia 39: 293-301.

F. Paz E. Palacios E. Mejía M. Martínez L. A. Palacios 2005Análisis de los espacios espectrales de la reflectividad del follaje de los cultivosAgrociencia39293301

26 

Paz, F. , E. Palacios , M. Bolaños , L.A. Palacios, M. Martínez , E. Mejía yA. Huete . 2007. Diseño de un índice espectral de la vegetación: NDVIcp. Agrociencia 41: 539-554.

F. Paz E. Palacios M. Bolaños L.A. Palacios M. Martínez E. Mejía A. Huete 2007Diseño de un índice espectral de la vegetación: NDVIcpAgrociencia41539554

27 

Paz, F. y E. Medrano. 2015. Patrones espectrales multi-angulares de clases globales de coberturas del suelo usando el sensor remoto POLDER-1. Terra Latinoamericana 33: 129-137.

F. Paz E. Medrano 2015Patrones espectrales multi-angulares de clases globales de coberturas del suelo usando el sensor remoto POLDER-1Terra Latinoamericana33129137

28 

Pinty B., J. L. Widlowski , N. Gobron , M. M. Verstraete , andD. J. Diner . 2002. Uniqueness of multiangular measurements. I. An indicator of subpixel surface heterogeneity form MISR. IEEE Transactions on Geoscience and Remote Sensing 40: 1560-1573.

B. Pinty J. L. Widlowski N. Gobron M. M. Verstraete D. J. Diner 2002Uniqueness of multiangular measurements. I. An indicator of subpixel surface heterogeneity form MISRIEEE Transactions on Geoscience and Remote Sensing4015601573

29 

Rahman, H., B. Pinty , andM. M. Verstraete . 1993. Coupled surface-atmosphere reflectance (CSAR) model: 2. Semiempirical surfaces model usable with NOAA advanced very high resolution radiometer data. J. Geophys. Res. 98: 20791-20801.

H. Rahman B. Pinty M. M. Verstraete 1993Coupled surface-atmosphere reflectance (CSAR) model: 2. Semiempirical surfaces model usable with NOAA advanced very high resolution radiometer dataJ. Geophys. Res.982079120801

30 

Ross, J. K. 1981. The radiation regime and architecture of plant stands. Dr. W. Junk. Hingham, MA, USA.

J. K. Ross 1981The radiation regime and architecture of plant stands. Dr. W. JunkHingham, MA, USA

31 

Schaepman-Strub, G., M. E. Schaepman, T. H. Painter, S. Dangel, and J. V. Martonchik . 2006. Reflectance quantities in optical remote sensing - definitions and case studies. Remote Sens. Environ. 103: 27-42

G. Schaepman-Strub M. E. Schaepman T. H. Painter S. Dangel J. V. Martonchik 2006Reflectance quantities in optical remote sensing - definitions and case studiesRemote Sens. Environ.1032742

32 

Wanner W., X. Li , and A. H. Strahler. 1995. On the derivation of kernels for kernel-driven models of bidirectional reflectance. J. Geophys. Res. 100: 21077-21089.

W. Wanner X. Li A. H. Strahler 1995On the derivation of kernels for kernel-driven models of bidirectional reflectanceJ. Geophys. Res.1002107721089

33 

Zhang Y., Y. Tian , R. B. Myneni , andY. Knyazikhin . 2002a. Required consistency between biome definitions and signatures with the physics of remote sensing. I: Empirical arguments. Remote Sens. Environ. 80: 418-434.

Y. Zhang Y. Tian R. B. Myneni Y. Knyazikhin 2002Required consistency between biome definitions and signatures with the physics of remote sensing. I: Empirical argumentsRemote Sens. Environ.80418434

34 

Zhang, Y., N. Shabanov, Y. Knyazikhin , andR. B. Myneni . 2002b. Required consistency between biome definitions and signatures with the physics of remote sensing. II: Theoretical arguments. Remote Sens. Environ. 80: 435-446.

Y. Zhang N. Shabanov Y. Knyazikhin R. B. Myneni 2002Required consistency between biome definitions and signatures with the physics of remote sensing. II: Theoretical argumentsRemote Sens. Environ.80435446

Notes

[2] Paz, F. y M. Bolaños. 2006. Modelación de la BRDF en la vegetación: reporte final. Colegio de Postgraduados. Reporte Noviembre para AGROASEMEX, 66 p.



This display is generated from NISO JATS XML with jats-html.xsl. The XSLT engine is libxslt.

Enlaces refback

  • No hay ningún enlace refback.