ALCANCES Y LIMITACIONES DE LOS ÍNDICES ESPECTRALES DE LA VEGETACIÓN: ANÁLISIS DE ÍNDICES DE BANDA ANCHA Scopes and Limitations of Spectral Vegetation Indices: Analysis of Broad Band Indices

Fernando Paz Pellat^{1‡}, Martín Enrique Romero Sanchez², Enrique Palacios Vélez¹, Martín Bolaños González¹, José René Valdez Lazalde¹ y Arnulfo Aldrete¹

RESUMEN

Actualmente existen publicaciones donde se abordan múltiples y diversos índices de vegetación (IV), sin embargo, la evidencia teórica y experimental manifiesta problemas en su diseño y aplicación. En este trabajo se analizan sesenta IV, usando modelos radiativos de interacciones de orden uno y dos. Los IV analizados se desarrollan en un formato general asociado a los patrones de las curvas espectrales iso-IAF (igual índice de área foliar); tanto a nivel estático como dinámico. En el caso dinámico, se demuestra que utilizando patrones teóricoexperimentales, solo uno de los IV analizados reproduce la estructura matemática-experimental espectral del crecimiento de la vegetación. Al final se presentan varios ejercicios de diseño de IV para el caso de interacciones de orden uno e interacciones mixtas de orden uno y dos, usando el marco analítico directo desarrollado. Se concluye que solo un IV cumple con los requerimientos teórico-experimentales, aunque solo para la etapa vegetativa-reproductiva, hasta el IAF máximo.

Palabras clave: análisis de patrones, curvas iso-IAF, espacios espectrales, sensores remotos.

SUMMARY

Currently, multiple and diverse vegetation indices (VI) are published. However, theoretical and experimental evidence indicates that problems exist in their design and application. In this paper, sixty indices were analyzed using radiative models of interactions of order one and two. The VI analyzed were converted

[‡] Autor reponsable (ferpazpel@gmail.com)

² CENID-COMEF,INIFAP. Av. Progreso, Barrio Sta. Catarina, Del. Coyoacán. 04010 México, D. F.

Recibido: octubre de 2013. Aceptado: agosto de 2014. Publicado en Terra Latinoamericana 33: 27-49. into a general format associated with the patterns of the spectral curves isoLAI (equal leaf area index), at the static and dynamic levels. In the dynamic case, using spectral theoretical and experimental patterns or structures, it was shown that only one IV reproduced the pattern formulated. At the end, several exercises are presented for designing IV in the case of order one interactions and mixed order (one and two), using the analytic framework developed. As a conclusion, only one of the IV satisfies the theoretical and empirical requirements, but only for the vegetative-reproductive stage and up to maximum LAI.

Index words: patterns analysis, iso-LAI curves, spectral spaces, remote sensing.

INTRODUCCIÓN

El uso de la tecnología de los sensores remotos a bordo de plataformas espaciales ha tenido gran auge durante varias décadas, principalmente por la facilidad de acceso a software de procesos de imágenes satelitales de bajo costo o gratuitas. No obstante, aún se presenta el reto de diseñar aplicaciones con sustento teórico - empírico que permitan avances en la estimación de variables biofísicas en forma sólida y confiable.

Los resultados obtenidos del uso de los datos provenientes de sensores remotos se explican, en buena parte, de los patrones espectrales de la reflectancia del follaje de la vegetación, la cual obedece a principios biofísicos y bioquímicos (Ross, 1981; Goel, 1988; Myneni *et al.*, 1989; Jacquemoud and Baret, 1990; Myneni and Ross, 1991).

Una estrategia de análisis de los datos obtenidos por sensores remotos, es mediante modelos biofísicos de la transferencia de la radiación en el follaje de la vegetación (Ross, 1981; Goel, 1988; Myneni *et al.*, 1989). Aunque se han realizado grandes esfuerzos de modelación y de inversión (dados los resultados obtenidos bajo las condiciones iniciales del modelo) de éstos para obtener

¹ GRENASER, Colegio de Postgraduados, Campus Montecillo. 56230 Montecillo, Estado de México.

parámetros biofísicos de la vegetación, los resultados obtenidos han sido limitados (Jacquemoud et al., 1995 y 2000; Weiss et al., 2000); independientemente del tiempo y costos de computación requeridos, lo cual hace esta estrategia poco práctica para aplicaciones en tiempo "casi real" (1-5 días). El problema fundamental de la inversión de modelos radiativos biofísicos es que son tareas matemáticamente indeterminadas; esto es, generalmente usando un par de datos (rojo o R e infrarrojo cercano o IRC), es necesario estimar la distribución espacial y angular de los fitoelementos (hojas principalmente) del follaje y sus propiedades ópticas. Para caracterizar esta información generalmente es necesario al menos ocho datos: reflectancia y transmitancia de las hojas; reflectancia del suelo; media y varianza de la distribución angular de las hojas y factor de agrupamiento espacial de éstas; esto sin considerar información de la fuente de iluminación (radiación difusa y directa) y la geometría sensor - iluminación. Es matemáticamente claro que obtener información de más de once variables con dos datos, es algo que implica soluciones múltiples del problema, donde cualquiera de ellas puede ser la correcta. Aún en el caso de contar con información multi o hiper-espectral (más de once bandas), el problema de indeterminación permanece por la alta correlación entre las bandas espectrales (Price, 1990 y 1992a).

De la problemática asociada a la inversión de modelos biofísicos, un camino ampliamente utilizado en las aplicaciones de los sensores remotos es el uso de índices espectrales de la vegetación o IV. Los IV basados en sensores remotos explotan el alto contraste entre la banda del *R* y del *IRC* (Tucker, 1979), para caracterizar y diferenciar la vegetación de otros objetos terrestres. En la actualidad hay un gran número de IV publicados en la literatura, que han sido propuestos bajo diferentes argumentos y que aducen criterios de optimización para los efectos del suelo (fondo de la vegetación), atmósfera o geometría sol-sensor (Chehbouni *et al.*, 1994; Liu y Huete, 1995; Verstraete y Pinty; 1996; Gao *et al.*, 2002).

En este trabajo se analiza la estructura o patrones matemáticos asociados a IV reportados en diferentes publicaciones, utilizando como referencia el marco teórico general desarrollado por Paz *et al.* (2014). Para esta tarea, los IV se han reformulado en relación con las curvas iso-*IAF*, de tal manera que resulten claras las hipótesis implicadas por los IV, para analizar su validez desde el punto de vista de transferencia radiativa. El planteamiento de este trabajo se fundamenta en términos de eficacia (hacer lo correcto) y eficiencia (hacerlo correctamente) en el diseño de IV; es decir, un IV debe cumplir los requerimientos teóricos y experimentales para que sea sólido y confiable. Aunque es posible generar muchos IV bajo diferentes planteamientos y obtener correlaciones estadísticas significativas con variables biofísicas, desde la referencia teórica y experimental, solo aquellos IV que se ajusten a los patrones observados serán viables para su uso generalizado, más allá del conjunto de datos que se utilice para su diseño y calibración. Definido el patrón que debe cumplir un IV (eficacia), el segundo objetivo es parametrizarlo adecuadamente (eficiencia) en función de conjuntos de datos. Al final de este trabajo se realizan varios ejercicios de diseño de IV para lograr los objetivos planteados.

El contexto para el análisis de los IV discutidos es su aplicación en áreas relativamente grandes (por ejemplo: zonas de riego), donde las propiedades ópticas de los suelos siguen una "línea del suelo". Un análisis a escala de pixel por pixel esta fuera del alcance de este trabajo.

La discusión siguiente está en función de las bandas del sensor ETM+ del satélite Landsat 7, como referencia: banda azul o *A* centrada en 480 nm; banda verde o *V* centrada en 570 nm; banda *R* centrada en 660 nm; banda *IRC* centrada en 840 nm; banda infrarrojo medio 1 o *IRM1* centrada en 1650 nm; banda infrarrojo medio 2 o *IRM2* centrada en 2200 nm.

MATERIALES Y MÉTODOS

Marco Teórico de Referencia

Para analizar los patrones matemáticos asociados a los IV publicados en la literatura, es necesario establecer un marco teórico de referencia que permita revisar su congruencia en relación a la teoría de la transferencia radiativa en la vegetación. En la Figura 1 se muestra el patrón temporal de crecimiento de un cultivo, en el espacio espectral *R* e *IRC*, representado por curvas de igual *IAF* (iso-*IAF*), misma cantidad de vegetación y suelos ópticamente diferentes, la cual se generó usando seis tipos de suelos (S2, S5, S7, S9, S11 y S12; del más oscuro al más claro). Paz *et al.* (2005) detallan las simulaciones radiativas mostradas.

Figura 1. Espacio espectral *IRC-R* para las simulaciones del cultivo de maíz. R = rojo; IRC = infrarojo cercano; IAF= índice de área foliar.

Las reflectancias del suelo debajo de la vegetación generalmente forman una "línea del suelo" (Baret *et al.*, 1983), definida por:

$$IRCs = a_S + b_S Rs \tag{1}$$

donde: a_s y b_s son constantes empíricas.

En la Figura 1 se han ajustado líneas rectas (interacciones de primer orden) a los valores iso-*IAF* de la reflectancia de la vegetación, donde las reflectancias

del suelo (línea del suelo) varían. Para un mismo valor de reflectancia del suelo, la curva iso-Suelo (no lineal) representa una curva de crecimiento (diferentes valores del IAF) de la vegetación. Las curvas iso-Suelo convergen a valores en al ápice de la Figura 1, representados por las reflectancias en el infinito o de un medio ópticamente denso para las bandas del R e IRC. En este caso, las reflectancias, particularmente en la banda R están saturadas (no cambian de valor al incrementarse el follaje de la vegetación).

El patrón de la Figura 1 ha sido verificado experimentalmente (Huete *et al.*, 1985; Price, 1992b con datos de Huete y Jackson, 1987; Baush, 1993; Gilabert *et al.*, 2002; Meza Diaz y Blackburn, 2003; Romero *et al.*, 2009; Odi-Lara *et al.*, 2010) y por modelos de transferencia radiativa (Richardson y Wiegand; 1991, Baret y Guyot, 1991; Qi *et al.*, 1994; Yoshioka *et al.*, 2000; Gao *et al.*, 2000).

La Figura 2 muestra dos experimentos de campo con cultivos contrastantes: maíz (Bausch, 1993) y algodón (Huete *et al.*, 1985). En ambos experimentos, mediciones a nadir y cultivos sin estrés, se utilizaron charolas deslizantes con diferentes suelos debajo de los cultivos. En las referencias mencionadas se detallan los experimentos discutidos. En el experimento de maíz el ángulo cenital solar durante toda la campaña de muestreo varió de 17.2° a 24.2°. En el caso del experimento de algodón, las variaciones fueron de 22° a 31.7°. Considerando que las variaciones de la geometría solsensor fueron mínimas y que ambos experimentos muestran una ventana de condiciones de iluminación más

Figura 2. Curvas iso-IAF del experimento de maíz y algodón. R = rojo; IRC = infrarojo cercano; IAF= índice de área foliar.

o menos similares, no se hizo ningún intento de estandarizar la geometría sol-sensor de estos experimentos.

Las curvas iso-*IAF* (la línea recta es un caso especial) pueden aproximarse usando un modelo de transferencia radiativa en la vegetación para medios turbios, homogéneos o heterogéneos (Paz *et al.*, 2014). En este caso hay varias aproximaciones, dependiendo del tipo de interacciones: de primer orden (los fotones tocan una vez al suelo del fondo de la vegetación) y de segundo orden (los fotones tocan al suelo dos veces), etc. El Cuadro 1 ejemplifica la estructura matemática de diferente orden de interacción para las bandas del R e IRC (Paz *et al.*, 2014), donde *sv* se refiere a la mezcla suelo (*s*) y vegetación (*v*).

Las constantes de los modelos presentados en el Cuadro 1, los primeros dos casos, están definidas en términos de variables radiativas y biofísicas en Paz *et al.* (2014). El caso de interacciones de segundo orden para las bandas del $R \in IRC$, tienen una justificación práctica baja, ya que la relación polinómica es compleja y solo contribuye en un porcentaje pequeño (menor al 1%) al del uso de interacciones de primer orden para el R e interacciones de segundo orden para el R para el R (Paz *et al.*, 2014). El caso de interacciones de primer orden para

las bandas del R e IRC aproxima bien el patrón espectral de las curvas iso-IAF y solo tiene errores pequeños (alrededor del 10%) para el caso de suelos muy reflectivos (Paz *et al.*, 2014).

Los patrones de las rectas iso-*IAF* mostrados en la Figura 1 y definidos en el Cuadro 1 son estáticos; es decir, representan un punto en la curva de crecimiento de la vegetación. Para analizar el ciclo completo del crecimiento de la vegetación (etapa vegetativa), Paz *et al.* (2007) plantearon el espacio paramétrico a_0 - b_0 (espacio de fase, con el tiempo implícito). La Figura 3 muestra el caso de interacciones de primer orden para el *R* e *IRC*, relación lineal, para el caso mostrado en la Figura 1, pero generalizado a suelos muy oscuros (Rs = 1%) a muy claros (Rs = 35%), con intervalos del *IAF* de 0.5. La letra s es usada para definir la condición de solo suelo (IAF = 0).

En la Figura 3b se ilustra una transformación del espacio a_0 - b_0 , la cual hace lineal los dos segmentos del patrón original a_0 - b_0 , que fue usada por Paz *et al.* (2007) para el desarrollo del índice espectral NDVIcp. La Figura 4 muestra los datos del experimento de maíz y algodón de la Figura 2, donde ambos experimentos fueron mezclados, mostrando patrones similares a los de la Figura 3b.

Cuadro 1. Curvas espectrales iso-IAF para diferentes aproximaciones.

Orden de las interacciones radiativas		Modelo
Rsv	IRCsv	
1	1	$IRCsv = a_0 + b_0Rsv$
1	2	$IRCsv = a_0 + b_0Rsv + c_0Rsv^2$
2	2	$IRCsv^{2} = k_{0} + k_{1}Rsv + k_{2}Rsv^{2} + k_{3}IRCsv + k_{4}IRCsvRsv$

R = rojo; IRC = infrarojo cercano.

Figura 3. (a) Espacios paramétricos $a_0 - b_0$; y, (b) $a_0 - 1/b_0$ para el caso de interacciones de primer orden de las bandas espectrales del *R* e *IRC*. IAF= índice de área foliar; R = rojo; IRC = infrarojo cercano.

Figura 4. Patrón *a₀-1/b₀* para el experimento de maíz y algodón combinados.

En términos de la dinámica del crecimiento de la vegetación, la relación entre a_0 y b_0 debe seguir los dos patrones (A y B) mostrados en la Figura 3. Si un índice de vegetación solo presenta un patrón, no modela en forma completa el crecimiento en la etapa vegetativa y reproductiva de la vegetación.

Los modelos descritos en el Cuadro 1 fueron ajustados por regresión estadística a los valores de las simulaciones radiativas de la Figura 1. Para los casos del Cuadro 1, de interacciones mayor que orden uno, se requiere un espacio paramétrico multi-dimensional. Partiendo del argumento de que si en el espacio de los dos primeros parámetros, un IV no cumple la relación a_0-b_0 definida en forma teórica y experimental, entonces el modelo del IV no será válido; así, se analizan espacios paramétricos similares al caso de la Figura 3, para mostrar en forma gráfica las implicaciones de los IV.

La Figura 5a presenta el caso del modelo de interacciones de primer orden del R e interacciones de

segundo orden del *IRC*. En la Figura 5b se incluyó el caso de un modelo lineal con interacciones, el cual puede considerarse como el caso de primer orden no lineal del modelo de interacciones de segundo orden $(k_0 + k_1Rsv + k_2Rsv^2 + k_3IRCsv + k_4IRCsv + k_5IRCsv^2 = 0; k_2 = 0, k_5 = 0).$

El caso de interacciones de segundo orden para las bandas del $R \in IRC$ esta mostrado en la Figura 6.

Como se discute más adelante en el análisis de los IV, es importante revisar dos casos especiales del modelo de interacciones de segundo orden para el R e IRC: caso donde $k_1=0$, $k_2=0$ y $k_4=0$; y, caso donde $k_4=0$ (Figura 7).

De las figuras asociadas a los modelos teóricos, y sus variaciones, mostrados en el Cuadro 1 podemos establecer algunos puntos básicos para el análisis de los IV:

a) Los patrones matemáticos asociados a los dos primeros parámetros de los modelos teóricos de la transferencia radiativa analizados tienden a un cambio de pendiente (Patrón A \rightarrow Patrón B) alrededor de un *IAF* entre 1 y 3, definiendo un requerimiento esencial para el diseño de IV que aproximen la etapa vegetativa-reproductiva del crecimiento de la vegetación.

b) Los patrones generales de los dos primeros parámetros de los modelos teóricos representan un primer segmento no lineal (Patrón A), que puede ser aproximado en forma razonable por una línea recta; y después de la transición del cambio de pendiente de la curva general, se presenta un segmento que puede acercarse por una línea recta (Patrón B). Esto es más fácil de visualizar si hacemos una transformación, no lineal, del segundo parámetro, tal como está mostrado en la Figura 3b.

Figura 5. Espacios paramétricos a_{θ} - b_{θ} para los casos: (a) interacciones de primer orden del *R* e interacciones de segundo orden del *IRC*; y (b) caso de primer orden no lineal del modelo de interacciones de segundo orden. R = rojo; IRC = infrarojo cercano; IAF= índice de área foliar.

Figura 6. Espacios paramétricos $k_0 - k_1$ para interacciones de segundo orden para las bandas espectrales del R e *IRC*. R = rojo; IRC = infrarojo cercano; IAF= índice de área foliar.

c) En términos generales, partiendo de que los modelos teóricos analizados representan el comportamiento espectral de la vegetación (en términos teóricos y experimentales), deberán cumplirse dos requerimientos para el diseño de un IV válido: i) modelar las curvas iso-*IAF* particulares (Figura 1 y Cuadro 1 para patrones matemáticos); y ii) modelar los patrones de los espacios paramétricos del crecimiento de la vegetación (Figura 3 a 7). El primer requerimiento es cumplido por un polinomio de $n \ge 1$ grado, donde el caso de interacciones de primer (n = 1) o segundo orden (n = 2) son casos particulares. El segundo requerimiento es más difícil de cumplir y debe estructurarse en una formulación explicita de los IV (Paz *et al.*, 2007).

Índices Espectrales Actuales del Espacio *R-IRC*

Siguiendo los argumentos de Paz *et al.* (2014) en relación a los espacios espectrales, en esta sección solo se analiza el caso del espacio del *R-IRC*. Posteriormente, los desarrollos son generalizados a otros espacios

espectrales y al caso de los efectos atmosféricos. Independientemente de la formulación original, la gran mayoría de los IV que se han publicado pueden clasificarse en función de los modelos definidos en el Cuadro 1. En lo siguiente, los análisis parten de considerar a las reflectancias como fracciones. Los resultados mostrados en las Figuras 3 a 5 no se modifican, pero $a_0 y k_0$ deben dividirse entre 100 para convertirlos al formato de fracciones.

IV Asociados a Modelos de Interacciones de Primer Orden del *R* e *IRC*

En el Cuadro 2 se enlistan los IV analizados en este trabajo que implican un modelo radiativo de interacciones de primer orden para las bandas del R e *IRC*. En el mismo cuadro se define la formulación de a_0 y b_0 en función de los IV, así como la relación implicada entre estos.

Para estimar las relaciones para a_0 , b_0 y entre a_0 y b_0 , el procedimiento consiste de los siguientes pasos: i. Desarrollar el IV en términos de *R* e *IRC*, para establecer el patrón matemático entre éstos. Por ejemplo, el índice SAVI (Huete, 1988) definido por:

$$SAVI = \left(\frac{IRC - R}{IRC + R + L}\right)(1 + L)$$
(2)

puede ser puesto como:

$$IRC = \left[\frac{(SAVI)L}{(1+L) - SAVI}\right] + \left[\frac{(1+L) + SAVI}{(1+L) - SAVI}\right]R$$
(3)

Figura 7. Espacios paramétricos $k_0 - k_1$ para interacciones de segundo orden para el R e IRC: (a) $k_1 = 0$, $k_2 = 0$ y $k_4 = 0$; y, (b) $k_4 = 0$. R = rojo; IRC = infrarojo cercano; IAF= índice de área foliar.

(6)

que implica un modelo tipo $IRC = a_0 + b_0 R$, por lo que los parámetros están definidos en la relación (3).

ii. Si $a_0 ext{ y } b_0 ext{ o } (k_0 ext{ y } k_1)$ están en función del IV, entonces es posible establecer la relación entre $a_0 ext{ y } b_0 (k_0 ext{ y } k_1)$. El procedimiento consiste en poner primero el IV en función de a_0 . Para el ejemplo analizado, quedaría como:

$$a_0 = \frac{(SAVI)L}{(1+L) - SAVI}$$

$$SAVI = \frac{L - a_0}{a_0(1+L)}$$
(4)

iii. Finalmente, el IV en función de a_0 es sustituido en la relación entre b_0 y el IV, para generar la relación entre a_0 y b_0 . Para el ejemplo analizado, quedaría como:

$$b_0 = \frac{(1+L) + SAVI}{(1+L) - SAVI}$$

$$b_0 = 1 + \left(\frac{2}{L}\right) a_0$$
(5)

iv. Cuando $a_0 \circ b_0 (k_0 \circ k_1)$ no es función del IV y tiene un valor constante, no es posible establecer una relación entre $a_0 y b_0$. En estos casos $a_0 \circ b_0 (k_0 \circ k_1)$ es función del IV [f(IV)].

De acuerdo al Cuadro 2, solo existen cuatro patrones generales (patrones A):

Patrón 1:

 $a_0 = 0$ $b_0 = f(IV)$ <u>Patrón 2</u>: $a_0 = f(IV)$

$$a_0 = f(IV)$$

$$b_0 = k$$

$$b_0 = s + ta_0$$

Patrón 4 :

$$b_0 = \frac{1}{c + da_0}$$

k, s, t, c, d constantes

El caso del patrón 1 y 2 de la relación (6) está mostrado en la Figura 8 en relación al patrón teóricoempírico discutido anteriormente. Se observa que el patrón 1 es una línea recta vertical en el origen de a_0 y el patrón 2 es una línea recta horizontal con intersección con el eje b_0 en el punto k. Así, en la Figura 8 es claro que estos dos tipos de patrones asociados a diferentes IV (Cuadro 2) son malas aproximaciones al patrón teórico-experimental.

Todos los índices asociados al patrón 1 pueden ser hechos equivalentes entre sí, al igualar las expresiones de b_{a} , ya que $a_{a} = 0$ para todos ellos.

En el caso del patrón 2, los índices PV_1 e IVIS generan los mismos valores para a_0 , por lo que ambos índices son similares. Esto puede ser visualizado al poner el índice IVIS en forma explícita para R e *IRC*, sustituyendo *dIRC* por su valor. Aunque ambos índices fueron diseñados con diferentes argumentos, los resultados obtenidos son similares.

En el caso del patrón 3 de la relación (6), al describir en forma explícita la relación entre $a_0 y b_0$, podemos encontrar varias situaciones de interés:

• Los índices SAVI₂ y PPVI son similares (misma relación entre a_0 y b_0) aunque fueron formulados con diferentes metodologías.

• El índice GESAVI es equivalente al TSAVI₂ al utilizar $Z = b_s X - a_s$

• En lo general, todos los índices asociados al patrón lineal a_0 - b_0 pueden ser hechos equivalentes entre sí por transformaciones lineales.

• El mejor índice asociado al patrón 3 es el que cuyo origen (intersección con el eje b_0) pasa por el punto de la línea del suelo (a_s, b_s) y tiene una pendiente similar a

Figura 8. Patrones entre a_0 - b_0 asociados al caso $a_0 = 0$ y $b_0 = f(IV)$ y $a_0 = f(IV)$ y $b_0 = k$, donde k es una constante.

Índice	Expresión	<i>a</i> ₀	<i>b</i> ₀	Relación a_0 - b_0	Autores
RVI	IRC R	0	RVI	$a_0 = 0$ $b_0 = f(IV)$	Pearson y Miller, 1972
NDVI	$\frac{IRC - R}{IRC + R}$	0	$\frac{1 + NDVI}{1 - NDVI}$	$a_0 = 0$ $b_0 = f(IV)$	Rouse et al., 1974
TVI	$\sqrt{\frac{(IRC - R)}{(IRC + R)}} + 0.5$	0	$\frac{0.5 + TVI^2}{1.5 - TVI^2}$	$a_0 = 0$ $b_0 = f(IV)$	Deering et al., 1975
LNDVI	$1.2 \frac{IRC - R}{IRC + 5R}$	0	$\frac{1.2 - 5LNDVI}{1.2 - LNDVI}$	$a_0 = 0$ $b_0 = f(IV)$	Jiang y Huete, 2010
WDRVI	$\frac{aIRC - R}{aIRC + R}$	0	$\frac{1 + WDRVI}{a(1 - WDRVI)}$	$a_0 = 0$ $b_0 = f(IV)$	Gitelson, 2004
DVI	IRC – R	DVI	1	$a_0 = f(W)$ $b_0 = 1$	Jordan, 1969
PVI ₁	$\frac{IRC - b_S R - a_S}{\sqrt{1 + b_S^2}}$	$a_{S} + PVI_{1}(1 + b_{S}^{2})^{1/2}$	b _S	$a_0 = f(IV)$ $b_0 = b_S$	Richardson y Wiegand, 1977
IVIS	$-ln\left(1 - \frac{dIRC}{dIRC \infty}\right)$ $dIRC = IRC - (a_S + b_S R)$	$(dIRC \propto + a_S) -$ $(dIRC \propto) \exp(-IVIS)$	b _S	$a_0 = f(IV)$ $b_0 = b_S$	Paz <i>et al.,</i> 2011
SLI	$\frac{R + b_S (IRC - a_S)}{\sqrt{1 + b_S^2}}$	$a_{S} + \frac{SLI(1 + b_{S}^{2})^{1/2}}{b_{S}}$	$-\frac{1}{b_s}$	$a_0 = f(IV)$ $b_0 = -1/b_S$	Richardson y Wiegand, 1977
PVI ₃	$a_S IRC - b_S R$	$\frac{PVI_3}{a_S}$	$\frac{b_S}{a_S}$	$a_0 = f(IV)$ $b_0 = b_S / a_S$	Qi <i>et al.,</i> 1994

Cuadro 2. Índices espectrales de la vegetación para interacciones orden uno para el R e IRC.

Índice	Expresión	<i>a</i> ₀	<i>b</i> ₀	Relación a_0 - b_0	Autores
SAVI ₂	$\frac{IRC}{R + \left(\frac{a_S}{b_S}\right)}$	$\left(\frac{a_S}{b_S}\right) SAVI_2$	SAVI 2	$b_0 = \left(\frac{b_S}{a_S}\right) a_0$	Major <i>et al.,</i> 1990
PPVI	$\frac{IRC - b_S R - a_S}{IRC}$	$\frac{a_S}{1 - PPVI}$	$\frac{b_S}{1 - PPVI}$	$b_0 = \left(\frac{b_S}{a_S}\right) a_0$	Paz <i>et al.</i> , 2003
SAVI	$\frac{(IRC - R)}{(IRC + R + L)} (1 + L)$	$\frac{SAVI * L}{(1+L) - SAVI}$	$\frac{(1+L) + SAVI}{(1+L) - SAVI}$	$b_0 = 1 + \left(\frac{2}{L}\right) a_0$	Huete, 1988
OSAVI	$\frac{IRC - R}{IRC + R + Y}$	$\frac{OSAVI * Y}{(1 - OSAVI)}$	$\frac{1 + OSAVI}{1 - OSAVI}$	$b_0 = 1 + \left(\frac{2}{Y}\right) a_0$	Rondeaux et al., 1996
TSAVI ₂	$\frac{b_{S}\left[IRC - b_{S}R - a_{S}\right]}{R + b_{S}IRC - a_{S}b_{S} + X(1 + b_{S}^{2})}$	$a_{S} + \frac{X(1 + b_{S}^{2}) * TSAVI_{2}}{b_{S}(1 - TSAVI_{2})}$	$\frac{b_S^2 + TSAVI_2}{b_S(1 - TSAVI_2)}$	$b_0 = \left[\frac{b_S X - a_S}{X}\right] + \left[\frac{1}{X}\right] a_0$	Baret y Guyot, 1991
GESAVI	$\frac{IRC - b_S R - a_S}{IRC + Z}$	$\frac{a_S + Z * GESAVI}{1 - GESAVI}$	$\frac{b_S}{1 - GESAVI}$	$b_0 = \left(\frac{b_S Z}{a_S + Z}\right) + \left(\frac{b_S}{a_S + Z}\right) a_0$	Gilabert et al., 2002
NDVIcp	$\frac{(IRC - a_0) - R}{(IRC - a_0) + R} = \frac{b_0 - 1}{b_0 + 1}$	$\frac{1}{d} \left(\frac{1 - NDVIcp}{1 + NDVIcp} \right) - \frac{c}{d}$	1 + NDVIcp 1 - NDVIcp	$b_0 = \frac{1}{c + da_0}$	Paz <i>et al.,</i> 2007
MSAVI ₂	$\frac{2IRC + 1 - [(2IRC + 1)^2 - 8(IRC - R)]}{2}$	$\frac{1}{2} \frac{1}{2} MSAVI_2$	$\frac{1}{1 - MSAVI_2}$	$b_0 = \frac{1}{1 - 2a_0}$	Qi <i>et al.,</i> 1994

Cuadro 2. Índices espectrales de la vegetación para interacciones orden uno para el R e IRC (continuación).

la del patrón teórico – experimental, tal como se ejemplifica en la Figura 8.

En el caso del patrón 4, solo el MSAVI, y NDVIcp tienen un patrón no-lineal correcto (ver Figura 3b y 4). Es sorprendente que el MSAVI₂, generado bajo argumentos diferentes del NDVIcp, concuerde con este último. En el caso del NDVIcp, las constantes utilizadas son c = 1 y d = -2.2 (Paz *et al.*, 2007). No obstante lo anterior, el NDVIcp fue propuesto para modelar explícitamente solo la fase exponencial (y el inicio de su transición a un cambio de fase) de la etapa vegetativa del crecimiento de la vegetación, dejando en claro que su uso fuera de esta fase no es adecuado. Adicionalmente, el NDVIcp fue diseñado para usar un valor de la constante c en función de las constantes de la línea del suelo (el valor de c = 1 corresponde a la hipótesis explicita de suponer $a_s = 0$ y $b_s = 1$; cuando no se conocen estos valores) (Paz et al., 2007).

La discusión presentada permite analizar diferentes IV en un formato genérico de análisis, permitiendo detectar índices que son similares.

En el Cuadro 3 están los IV asociados con el caso de primer orden no lineal del modelo de interacciones de segundo orden.

IV Asociados a Modelos de Interacciones de Primer Orden del *R* e Interacciones de Segundo Orden del *IRC*

Aunque el caso de los modelos de interacciones de primer orden de la banda del R e interacciones de segundo orden de la banda del *IRC* son los que mejor

aproximan el comportamiento espectral de la vegetación (caso de incluir suelos muy reflectivos como en desierto), los autores no pudieron encontrar ningún IV asociado a este modelo.

IV Asociados a Modelos de Interacciones de Segundo Orden del *R* e *IRC*

El Cuadro 4 muestra los IV asociados con el modelo de interacciones de segundo orden para las bandas del R e *IRC*. El formato general usado en el Cuadro 4 es para las constantes del polinomio del Cuadro 1, para el modelo en cuestión.

El Cuadro 5 presenta la relación $k_0 - k_1$ asociada al Cuadro 4. Como ya se comentó, esta relación es suficiente para visualizar las hipótesis implicadas en los IV de interacciones de segundo orden.

Dos IV analizados y no presentados en los Cuadros 4 y 5 son el MSR (Chen, 1996) y el MSAVI₁ (Qi *et al.*, 1994). El índice MSR tiene una estructura matemática definida por:

$$k_1 Rsv + k_3 IRCsv + k_4 IRCsvRsv + k_7 IRCsvRsv^2 + k_{11} Rsv^3 IRCsv + k_{12} Rsv^4 = 0$$
⁽⁷⁾

El índice $MSAV_1$ tiene una estructura matemática definida por

$$k_1 Rsv + k_2 Rsv^2 + k_3 IRCsv + k_4 IRCsvRsv + k_5 IRCsv^2 + k_7 IRCsvRsv^2 + k_8 IRCsv^2 Rsv + k_9 Rsv^3 + k_{10} IRCsv^3 = 0$$
(8)

Índice	Expresión	<i>a</i> ₀	<i>b</i> ₀	С 0	Relación a_0 - b_0	Autores
PVI ₂	$\frac{b_{S}\left[(IRC - b_{S})(R - a_{S})\right]}{R + b_{S}IRC - a_{S}b_{S}}$	$a_{S} + \frac{(1+a_{S}^{2})PVI_{2}}{b_{S}}$	$\frac{a_S}{b_S}$	$-\frac{1}{b_S}$	$a_0 = f(IV)$ $b_0 = a_S/b_S$	Baret <i>et al .</i> , 1989
TSAVI ₁	$\frac{(IRC - a_S)(R + b_S)}{\sqrt{1 + a_S^2}}$	$\frac{a_S (TSAVI_1 + b_S)}{TSAVI_1 + a_S}$	$-\frac{b_S^2 + TSAVI_1}{b_S(a_S + TSAVI_1)}$	$\frac{1}{a_S + TSAVI_1}$	$b_0 = \left(\frac{1+b_S}{a_S+b_S}\right) +$	Bannari <i>et al .</i> , 1996
					$\left(\frac{a_S - b_S^2}{a_S b_S (a_S + b_S)}\right) a_0$	

Cuadro 3. Índices espectrales de la vegetación para el caso de primer orden no lineal del modelo de interacciones de segundo orden.

Índice	Expresión	k ₀	k _I	<i>k</i> ₂	k ₃	<i>k</i> ₄	Autores
RDVI	$\frac{(IRC - R)}{(IRC + R)^{1/2}}$	0	RDVI ²	- 1	RDVI ²	2	Roujean y Breon, 1993
MNLI	$\frac{(IRC^2 - R)(1 + L)}{IRC^2 + R + L}$	$\frac{L * MNLI}{(1+L) - MNLI}$	$\frac{(1+L) + MNLI}{(1+L) - MNLI}$	0	0	0	Gong <i>et al</i> ., 2003
NLI	$\frac{IRC^2 - R}{IRC^2 + R}$	0	$\frac{1 + NLI}{1 - NLI}$	0	0	0	Goel y Qi. , 1994
BAI	$\frac{1}{\left(fR-R\right)^2 + \left(fIRC - IRC\right)^2}$	$\frac{1}{BAI(f-1)^2}$	0	- 1	0	0	Martin y Chuvieco, 2001
IVI 1	$\left[R^2 + \left(1 - \mathrm{IRC}\right)^2\right]^{1/2}$	$IVI_1^2 - 1$	0	- 1	2	0	Verstraete y Pinty, 1996
IVI 2	$\frac{1}{R^2 + (1 - IRC)^2}$	$\frac{1 - IVI_2}{IVI_2}$	-1	0	2	0	Verstraete y Pinty, 1996
IV ₃	$\frac{1}{\left(c_{R}-R\right)^{2}+\left(c_{IRC}-IRC\right)^{2}}$	$\frac{1 - IV_3c_R^2 + IV_3c_{IRC}^2}{IVI_3}$	2 <i>c</i> _R	- 1	2c _{IRC}	0	Verstraete y Pinty, 1996
NDVI×SR	$\frac{IRC^2 - R}{IRC + R}$	0	1 + NDVIxSR	0	NDVIxSR	0	Gong <i>et al</i> ., 2003
IVI 5	$\frac{PVI}{\left(c_{R}-R\right)^{2}+\left(c_{IRC}-IRC\right)^{2}}$	$-\frac{c_R^2 + c_{IRC}^2 + a_S}{\left(1 + b_S^2\right)^{1/2} I V I_5}$	$2c_{R} - \frac{b_{S}}{(1 + b_{S}^{2})^{1/2}} IVI_{5}$	- 1 	$\frac{2c_{IRC} + \frac{1}{(1 + b_S^2)^{1/2} IVI_5}}$	0	Verstraete y Pinty, 1996
GEO	$\frac{(IRC - a_S)^2 + R^2}{p(IRC - a_S) + qR}$ $p = (b_S - 1)/(1 + b_S^2)^{1/2}$ $q = (b_S + 1)/(1 + b_S^2)^{1/2}$	$-a_{S}(a_{S} + pGEO)$	qGEO	- 1	$2a_S + pGEO$	0	Malet, 1996
SAVI×SR	$\frac{IRC^2 - R}{(IRC + R + L)R}$	0	(SAVIxSR)L + 1	SAVIxSR	0	SAVIxSR	Gong <i>et al</i> ., 2003
IVI 7	$\frac{PVI (1 - 0.22 R)}{(c_R - R)^2 + (c_{IRC} - IRC)^2}$	$-\left(c_{R}^{2}+c_{IRC}^{2}+a_{S}\right)$	$-2(1+b_{S}^{2})^{1/2}c_{R}IVI_{7}$ $-0.22a_{S}+b_{S}$	$(1 + b_S^2)^{1/2}$ $IVI_7 - 0.22$	$2(1 + b_S^2)^{1/2}$ $c_{IRC} IVI_7 + 1$	- 0.22	Verstraete y Pinty, 1996

Cuadro 4. Índices espectrales de la vegetación para interacciones orden dos para el R e IRC.

Índice	Relación k_0 - k_1
NLI	$k_0 = 0, k_1 = f(IV)$
RDVI	$k_0 = 0, k_1 = f(IV)$
NDVIxSR	$k_0 = 0, k_1 = f(IV)$
SAVIxSR	$k_0 = 0, k_1 = f(IV)$
BAI	$k_0 = f(IV), k_1 = 0$
IVI ₁	$k_0 = f(IV), k_1 = 0$
IVI ₂	$k_0 = f(IV), k_1 = -1$
IV ₃	$k_0 = f(IV), k_1 = 2c_R$
MNLI	$k_1 = -1 + \left(\frac{2}{L}\right) k_0$
IVI ₅	$k_{1} = -(c_{R}) + \left(\frac{c_{IRC}b_{S} - c_{R}}{c_{R}^{2} + c_{IRC}^{2} + a_{S}}\right)k_{0}$
GEO	$k_1 = -\left[\frac{qa_s}{p}\right] + \left(\frac{q}{pa_s}\right)k_0$
IVI ₇	$k_{1} = \left(\frac{c_{R}}{c_{IRC}}\right) + \left(\frac{0.22a_{S}c_{IRC} - c_{R} - b_{S}c_{IRC}}{c_{IRC}(c_{R}^{2} + c_{IRC}^{2} + a_{S})}\right)k_{0}$

Cuadro 5. Relación $k_0 \cdot k_1$ para índices espectrales de la vegetación con interacciones orden dos para el *R* e *IRC*.

Aunque en apariencia complejos, los índices MSR y MSAVI₁ tienen las mismas hipótesis intrínsecas que los analizados anteriormente, por lo que su complejidad no aporta nuevo conocimiento. En general, una estructura matemática, curva iso-*IAF*, tipo polinómica mayor de segundo grado, con o sin interacciones, solo tiene beneficios muy marginales en la modelación de las reflectancias.

RESULTADOS

Para poder visualizar en forma gráfica las hipótesis implícitas de los índices espectrales de la vegetación analizados en la sección anterior, se usó la representación del espacio de los dos primeros parámetros del modelo de las curvas espectrales iso-*IAF*, para compararlos contra los patrones teóricos mostrados en las Figuras 3 a 5, tal como se ejemplificó en la Figura 8.

Patrones de los IV Asociados a Modelos de Interacciones de Primer Orden del R e IRC

En la Figura 9 se representan diferentes patrones asociados con los IV analizados en los Cuadros 2 y 3; éstos están clasificados del peor (A1) al mejor (A7), de acuerdo a la Figura 3a y 3b.

En el Cuadro 6 se enlistan los índices de vegetación de los Cuadros 2 y 3, mostrando en forma resumida el tipo de variación, y su signo, para los parámetros del modelo radiativo, de primer orden y con el caso de primer orden no lineal del modelo de interacciones de segundo orden, así como el tipo de patrón correspondiente a cada IV.

En los patrones de la Figura 6 no se consideraron las constantes asociadas a cada patrón, solo su formato general. El punto central de discusión es que ningún IV de los analizados modela adecuadamente el patrón espectral asociado a las curvas espectrales iso-*IAF* para la etapa vegetativa - reproductiva completa del crecimiento de la vegetación, la cual requiere de dos patrones (A y B en la Figura 3) con signos contrarios.

El caso del patrón A6 (lineal con origen diferente de cero) aproxima en algunos índices el patrón no-lineal, Figura 3a y Figura 8 para valores de IAF < 2.

Figura 9. Clasificación de patrones asociados con los índices de vegetación en el espacio a_{μ} - b_{μ} .

Índice	<i>a</i> ₀	b_0	С 0	Patrón
RVI	0	V (+)	0	A2
NDVI	0	V (+)	0	A2
TVI	0	V (+)	0	A2
LNDVI	0	V (+)	0	A2
WDRVI	0	V (+)	0	A2
DVI	V (+)	C (+)	0	A4
PVI ₁	V (+)	C (+)	0	A4
IVIS	V (+)	C (+)	0	A4
SLI	V (+)	C (+)	0	Al
PVI ₃	V (+)	C (-)	0	A4
SAVI	V (+)	C (+)	0	A6
SAVI ₂	V (+)	V (+)	0	A5
OSAVI	V (+)	V (+)	0	A6
TSAVI ₂	V (+)	V (+)	0	A6
GESAVI	V (+)	V (+)	0	A6
PPVI	V (+)	V (+)	0	A5
MSAVI ₂	V (+)	V (+)	0	A7
NDVIcp	V (+)	V (+)	0	A7
PVI ₂	V (+)	C (+)	C (-)	A4
TSAVI ₁	V (+)	V (+)	V (+)	A3

Cuadro 6. Patrones asociados a los IV de interacciones de orden uno para el *R* e *IRC*.

V = variable; C = constante.

Patrones de los IV Asociados a Modelos de Interacciones de Segundo Orden del *R* e *IRC*

En la Figura 10 se presentan diferentes patrones asociados con los IV analizados en los Cuadros 4 y 5, los cuales están clasificados del peor (B1) al mejor (B6), de acuerdo a las Figuras 6 y 7.

En el Cuadro 7 se muestran los índices de vegetación de los Cuadros 3 y 4, mostrando en forma resumida el tipo de variación (y signo) asociada a los parámetros del modelo radiativo, así como el tipo de patrón correspondiente a cada IV.

A diferencia del caso de los modelos de interacciones de primer orden, en lo general los patrones matemáticos asociados a los IV asociados a interacciones de segundo orden resultan inadecuados y no justifican su complejidad.

Así, en el caso de los índices de vegetación asociados a modelos de interacciones de segundo orden, ningún IV de los analizados modela en forma adecuada el patrón espectral asociado a las curvas espectrales iso-*IAF* para

Figura 10. Clasificación de patrones asociados a los índices de vegetación en el espacio k_a - k_i .

la etapa vegetativa - reproductiva completa del crecimiento de la vegetación, ya que requiere dos patrones con signos contrarios.

Espacios Espectrales Diferentes del R-IRC

En los espacios espectrales del visible (*R-A*, *R-V* y *V-A*), las curvas del suelo son aproximadamente lineales (Gitelson *et al.*, 2002; Paz *et al.*, 2005) y están altamente correlacionadas linealmente (Clevers, 1999). Asimismo, las bandas del infrarrojo medio están altamente correlacionadas linealmente con las del visible (Kaufman *et al.*, 1997; Karnieli *et al.*, 2001; Jiang *et al.*, 2008), por lo que pueden ser usadas en términos intercambiables.

Otros espacios diferentes del R e IRC dejan invariante los patrones discutidos en las secciones anteriores, ya que puede plantearse una relación lineal entre los espacios del R e IRC y los demás (Paz *et al.*, 2014).

$$Vsv = m_0 + n_0 Rsv$$

$$Asv = p_0 + q_0 Rsv$$
(9)

$$IRM1sv = r_0 + s_0 IRCsv$$

$$IRM2sv = t_0 + v_0 IRCsv$$

$$IRM1sv = x_0 + w_0 Rsv$$

$$IRM2sv = y_0 + z_0 Rsv$$
(10)

Índice	k _o	k ₁	<i>k</i> ₂	<i>k</i> ₃	<i>k</i> ₄	Patrón
RDVI	0	V (+)	C (-)	V (+)	C (+)	B2
MNLI	V (+)	V (+)	0	0	0	B6
NLI	0	V (+)	0	0	0	B2
BAI	V (+)	0	C (-)	0	0	B3
IVI ₁	V (-)	0	C (-)	C (+)	0	B4
IVI ₂	V (+)	C (-)	0	C (+)	0	B6
IVI ₃	V (-)	C (+)	C (-)	C (+)	0	B4
NDVIxSR	0	V (+)	0	V (+)	0	B1
IVI ₅	V (-)	V (-)	C (-)	V (+)	0	B6
GEO	V (-)	V (+)	C (-)	V (+)	0	B6
RDVI	0	V (+)	C (-)	V(+)	C (+)	B3
SAVIxSR	0	V(+)	V (+)	0	V (+)	В3
IVI ₇	C (-)	V (-)	V (+)	V (+)	C (-)	B4

Cuadro 7. Patrones asociados a los índices de vegetación de interacciones de orden dos para el R e IRC.

V = variable; C = constante.

Aunque el desarrollo de modelos radiativos, primer y segundo orden, para otros espacios espectrales sigue pasos similares al caso del *R-IRC*, el problema de la falta de simetría en la línea del suelo hace esta tarea compleja e inestable (dispersión en la línea del suelo); con excepción de los espacios del visible (A, V y R) y del *IRC*.

En el Cuadro 8 se presentan la mayoría de los IV de espacios espectrales diferentes de R-IRC o en combinación con ellos.

Suponiendo líneas del suelo en los espacios espectrales de los IV del Cuadro 8, los índices mostrados tienen patrones lineales y representan el caso de interacciones de orden uno en la transferencia radiativa; con excepción de los índices MTVI₂ y MCARI₂. Estos dos índices, después del uso de las relaciones (9), tienen un formato definido por:

$$IRCsv^{2} = k_{0} + k_{1}Rsv + k_{2}Rsv^{2} + k_{3}IRCsv + k_{4}IRCsvRsv + k_{11}R^{1/2}$$
(11)

Los patrones entre k_0 y k_1 , mismos argumentos que para el caso de interacciones de orden dos, muestran un formato similar a los casos analizados, por lo que no aportan información adicional.

En lo general, usando las transformaciones (9) y (10) y la discusión de Paz *et al.* (2014), los IV mostrados en el Cuadro 8 tienen las mismas restricciones que los casos analizados para el espacio del *R-IRC*, por lo que ningún IV de los analizados modela en forma correcta el patrón

espectral asociado a las curvas espectrales iso-*IAF* para la etapa vegetativa - reproductiva completa del crecimiento de la vegetación, que implica dos patrones con signos contrarios.

Efectos Atmosféricos en los Índices de Vegetación

Los efectos atmosféricos modifican los valores de los IV (Myneni y Asrar, 1994), pero dejan invariantes los patrones matemáticos asociados a a_0 - b_0 o k_0 - k_1 (Paz *et al.*, 2014). El Cuadro 9 enlista los principales índices espectrales de la vegetación propuestos para minimizar el efecto atmosférico.

El Cuadro 9 resume que, usando las relaciones (9) y (10), todos los índices tienen patrones lineales y corresponden a transformaciones lineales del modelo de interacciones de primer orden para $R \ e \ IRC$; con excepción del índice GEMI, el cual es un polinomio de sexto grado en Rsv y de quinto grado en IRCsv, con interacciones. En este caso, la complejidad de este índice no se justifica por los argumentos vertidos anteriormente para el caso de polinomios de grado mayor a dos.

Considerando que las propuestas de modificación de los efectos atmosféricos en los IV están orientadas a los IV analizados anteriormente y que los efectos atmosféricos son simples transformaciones lineales de las bandas espectrales (los patrones matemáticos de un polinomio de cualquier orden no se alteran), entonces ningún IV de los analizados modela en forma correcta el patrón espectral asociado a las curvas espectrales iso-*IAF* para la etapa vegetativa - reproductiva completa

Índice	Expresión	Patrón a_0 - b_0 o k_0 - k_1	Autores
GNDVI	$\frac{IRC - V}{IRC + V}$	Lineal	Gitelson et al., 2002
VARI	$\frac{IRC - [V - (A - R)]}{IRC + [V - (A - R)]}$	Lineal	Gitelson et al., 2002
VARI _{GREEN}	$\frac{V-R}{V+R-A}$	Lineal	Gitelson et al., 2002
MSI	$\frac{IRM1}{IRC}$	Lineal	Rock <i>et al.</i> , 1986
IRI	$\frac{IRC - IRM1}{IRC + IRM1}$	Lineal	Hardiski <i>et al.</i> , 1983
MIRI	IRM1 IRM2	Lineal	Musick y Pelletier, 1986
NDVI ₇₅	$\frac{IRM2 - IRM1}{IRM2 + IRM1}$	Lineal	Lee y Nekane, 1997
NDVI ₅₁	$\frac{IRM1 - A}{IRM1 + A}$	Lineal	Schneider, 1998
NDVI ₅₂	$\frac{IRM1 - V}{IRM1 + V}$	Lineal	Schneider, 1998
MTV_1	1.2[1.2(IRC-V) - 2.5(R-V)]	Lineal	Haboudane <i>et al.</i> , 2004
MCARI ₁	1.2[2.5(IRC - R) - 1.3(IRC - V)]	Lineal	Haboudane <i>et al.</i> , 2004
GVI/MGVI	$l_1A + l_2V + l_3R + l_4IRC$ $+ l_5IRM1 + l_6IRM2$	Lineal	Kauth y Thomas, 1976 / Misra y Wheeler, 1977
MTVI ₂	$\frac{1.5[1.2(IRC - V) - 2.5(R - V)]}{[(2IRC + 1)^2 - 6IRC - 5R^{1/2} - 0.5]^{1/2}}$	Lineal	Haboudane <i>et al.</i> , 2004
MCARI ₂	$\frac{1.5[2.5(IRC - R) - 1.3(IRC - V)]}{\left[\left(2IRC + 1\right)^2 - 6IRC - 5R^{1/2} - 0.5\right]^{1/2}}$	Lineal	Haboudane <i>et al.</i> , 2004

Cuadro 8. Índices espectrales de la vegetación asociados a otros espacios espectrales diferentes del R e IRC o en combinación con ellos.

En este cuadro se reportan a los autores que primeramente publicaron el IV.

del crecimiento de la vegetación, que implica dos patrones con pendientes con signos contrarios.

Diseño de Índices de Vegetación Generalizados – Interacciones de Orden 1 en *R* e *IRC*

Para modelar los patrones espectrales de las curvas iso-IAF es posible utilizar el modelo simple de interacciones de primer orden en las bandas del R e IRC (Figura 1), pero bajo la consideración de modelar el patrón definido en la Figura 3a. Este patrón no logra modelarse por un polinomio, ya que su posición restringe esta aplicación.

El problema fundamental del espacio del *R-IRC* es que induce un cambio de pendiente en la curvatura del patrón entre a_0 - b_0 , que muchos IV la interpretan como una "saturación" de las bandas. En realidad no hay tal saturación (antes del punto $R\infty$), solo es consecuencia de que los patrones lineales de algunos índices difieren más y más de los valores del segmento, aproximadamente

Índice	Relación k_0 - k_1	Patrón a_0 - b_0 o k_0 - k_1	Autores
EVI ₂	$2.5\left[\frac{IRC-R}{IRC+2.4R+1}\right]$	Lineal	Jiang <i>et al.</i> , 2008
EVI	$2\left[\frac{IRC - V}{IRC + c_1R + c_2A + L}\right]$	Lineal	Liu y Huete, 1995
ARVI	$\frac{IRC - [R - \gamma(A - R)]}{IRC + [R - \gamma(A - R)]}$	Lineal	Kaufman y Tanre, 1992
SARVI	$\frac{IRC - [R - \gamma(A - R)]}{IRC + [R - \gamma(A - R)] + L} (1 + L)$	Lineal	Kaufman y Tanre, 1992
AFRI _{IRM2}	$\frac{IRC - 0.5IRM2}{IRC + 0.5IRM2}$	Lineal	Karnielli et al., 2001
AFRI _{IRM1}	$\frac{IRC - 0.66IRM1}{IRC + 0.66IRM1}$	Lineal	Karnielli et al., 2001
SARVI ₂	$\frac{2.5(IRC - R)}{1 + IRC + 6R - 7.5A}$	Lineal	Huete et al., 1996
NDVI _{IRM1}	$\frac{IRC - IRM1}{IRC + IRM1}$	Lineal	Miura <i>et al.</i> , 1998
NDVI _{IRM2}	$\frac{IRC - IRM 2}{IRC + IRM 2}$	Lineal	Miura <i>et al.</i> , 1998
SAVI _{IRM1}	$\frac{IRC - IRM1}{IRC + IRM1 + L} (1 + L)$	Lineal	Miura <i>et al.</i> , 1998
SAVI _{IRM2}	$\frac{IRC - IRM2}{IRC + IRM2 + L} (1+L)$	Lineal	Miura <i>et al.</i> , 1998
GEMI	$\eta(1 - 0.25\eta) - \frac{R - 0.125}{1 - R}$ $\eta = \frac{2(IRC^2 - R^2) + 1.5IRC + 0.5R}{IRC + R + 0.5}$	Lineal	Pinty y Verstraete, 1992

Cuadro 9. Índices espectrales de la vegetación para minimizar el efecto atmosférico.

lineal, asociado a a_0 - b_0 cuando el *IAF* es mayor que 2. Esta saturación es consecuencia del formato de razones usado en la mayoría de los IV con patrones lineales en el espacio paramétrico a_0 - b_0 . Para evitar estas dificultades se puede realizar una transformación del espacio *R-IRC* al espacio *dIRC-R* (*dIRC* = *IRC* - a_s $b_s R$) (Figura 11) y se transporta al nuevo espacio $a_1 - \beta$. La transformación está dada por (Paz *et al.*, 2005):

$$\beta = \frac{90 - \arctan(b_1)}{45}$$

$$b_1 = \frac{b_0}{b_0 - b_S}$$

$$a_1 = a_0(1 - b_1) + a_S b_1$$
(12)

Figura 11. Espacio transformado *dIRC-IRC* de los datos de la Figura 1. IRC = infrarojo cercano; IAF= índice de área foliar.

En el espacio dIRC-R, la transformación lineal del espacio del R-IRC, las curvas espectrales iso-IAF tienen constantes a_1 y b_1 . En este espacio, la línea del suelo está sobre el eje IRC y la línea del ápice de la Figura 1 tiene una orientación de 45° (pendiente igual a 1.0), Figura 11 e intersección con el eje IRC de $(a_s + b_s R)$.

La trasformación lineal y angular usada para β permite evitar los problemas asociados a los parámetros de las líneas iso-*IAF* en el espacio del *R-IRC*. Ünsalan y Boyer (2004); Jiang *et al.* (2006) y Paz *et al.* (2006) han discutido este tipo de transformaciones lineales.

Para el caso de procesos radiativos tri-dimensionales (con sombreado), la relación entre a_1 y β es lineal. La Figura 12 ilustra en forma esquemática la relación entre a_1 y β . La variable β toma valores entre 0 y 1, donde

Figura 12. Patrón entre $a_1 - \beta$ para el caso tri-dimensional de transferencia radiativa.

el valor de $\beta = 1$ representa el caso donde la banda del *R* está saturada (reflectancia en el infinito). Para la condición de suelo desnudo (línea del suelo) β esta indefinido, ya que a_1 es inestable (dependiendo de la cercanía a a_s y b_s) para esta situación. No obstante esto, para valores del *IAF* ligeramente arriba de βc (valor umbral), el patrón es lineal, tal como el mostrado en la Figura 11.

La ventaja del modelo de la Figura 12 es que todos los patrones de crecimiento, líneas iso-*IAF*, convergen al punto $\beta = 1$; independientemente de las constantes de las líneas del suelo. Aunque para estimar a_i y β se requiere conocer las constantes a_s y b_s , el patrón mostrado en la Figura 12 se mantiene si se utilizan una línea del suelo "virtual", por ejemplo con $a_s = 0$ y $b_s = 1$.

La Figura 13a muestra la relación $a_1 - \beta$ para el experimento de maíz y algodón discutido en la Figura 4, donde los valores de *IAF* menores a 0.5 no fueron utilizados.

En la Figura 13b se muestra el caso de la utilización de todos los valores del *IAF* de los experimentos, pero con una línea del suelo virtual con $a_s = 0$ y $b_s = 0.5$, donde se observan dos patrones similares a los de la Figura 4.

Romero *et al.* (2009), desarrollaron el índice de vegetación cinéticamente modificado y ajustado por el efecto del suelo o IV_CIMAS para modelar los dos patrones mostrados en la Figura 4 y Figura 13, usando el índice NDVIcp que es función de b₀ (Paz *et al.*, 2007). La estrategia de modelación consistió en dos partes: usar el espacio $a_0 - 1/b_0$ para valores del IAF menores a 1.0 y el espacio $a_1 - \beta$ para valores del IAF mayores o iguales a 1. Para el caso del espacio $a_0 - 1/b_0$ se utilizó la relación (Figura 4, despejándola para a_0):

$$a_0 = \frac{1}{db_0} - \frac{c}{d} \tag{13}$$

c, d constantes

Si sustituimos la relación (13) en $IRC = a_0 + b_0 R$ (interacciones de primer orden), se puede resolver la ecuación para b_0 :

$$b_0 = \left(\frac{1}{2R}\right) \left[\frac{c}{d} + IRC + \left\{\left(\frac{c}{d} + IRC\right)^2 - \left(\frac{4}{R}\right)R\right\}^{1/2}\right]$$
(14)

Figura 13. Patrones $a_1 - \beta$ para los experimentos de maíz y algodón de la Figura 4: (a) consideración del uso de a_s y b_s medidos y solo valores para *IAF* mayor que 0.5 y (b) valores de todos los *IAF*, pero para $a_s = 0$ y $b_s = 0.5$.

La relación (14) muestra que con el conocimiento del patrón entre a_0 y b_0 podemos simplificar el problema a estimar un solo parámetro (b_0) usando solo el par medido de reflectancias (R, IRC).

En el caso del espacio $a_1 - \beta$, se utiliza la relación (Figura 12a):

$$\beta = q + ra_1$$
(15)
$$q, r \text{ constantes}$$

La relación (15) puede ser planteada en el espacio $a_0 - b_0$ como (Romero *et al.*, 2011):

$$a_{0} = \frac{1}{r} \left\{ (1 - b_{0})(2 - q) + \left[\frac{\arctan\left(\frac{b_{0}}{b_{0} - 1}\right)\left(\frac{180}{\pi}\right)}{45} \right] (b_{0} - 1) \right\}$$
(16)

Al sustituir esta relación en $IRC = a_0 + b_0R$ (interacciones de primer orden), se puede estimar b_0 de:

$$IRC = \left(\frac{1-b_0}{r}\right) \left\{ (2-q) - \left(\frac{\arctan\left(\frac{b_0}{b_0-1}\right)\left(\frac{180}{\pi}\right)}{45}\right) \right\} + b_0 R$$

$$(17)$$

La obtención de b_0 de la relación (17) fue haciendo una aproximación con el inverso de un polinomio de tercer grado en *R* e *IRC* (Romero *et al.*, 2011), la cual es implícita en las constantes *r* y *q* de la relación (15).

Una forma directa de estimar b_0 en el espacio a_0 - b_0 es usando el patrón bilineal mostrado en la Figura 4 (reflectancias en porcentajes):

$$a_{0} = \frac{1}{db_{0}} - \frac{c}{d}, \quad \frac{1}{b_{0}} \ge 0.2$$

$$a_{0} = \frac{1}{fb_{0}} - \frac{e}{f}, \quad \frac{1}{b_{0}} < 0.2$$

$$c = 1, \quad d = -0.0223$$

$$e = 0.0532, \quad f = 0.0045$$
(18)

Usando el par (R, IRC) medido, b_0 se estima de la relación (14) para ambos patrones lineales. La Figura 14 muestra los valores estimados del índice $(b_0-1)/b_0$ para los experimentos del maíz y algodón de la Figura 4, donde la estimaciones (casos de suelos diferentes y solo usando R e IRC) son similares a los valores medidos (b_0 se midió del ajuste a las líneas del suelo de la Figura 2).

Diseño de índices de vegetación generalizados – interacciones de orden 1 en *R* y orden 2 en *IRC*

En el caso de interacciones de orden 1 en R e interacciones de orden 2 en IRC, tal como se mencionó anteriormente, los autores no pudieron encontrar ningún IV con este patrón, por lo que esta sección discute el diseño de este tipo de índices.

Figura 14. Valores medidos y estimados de $(b_0-1)/b_0$ del experimento de maíz y algodón.

En un enfoque semi-empírico (con base teórica en funciones matemáticas), es posible desarrollar diferentes IV para interacciones como las mencionadas (IV12). En el contexto general estático, el modelo de interacciones 12 (orden 1 en R y orden 2 en *IRC*) estará dado en el Cuadro 1 como:

$$IRC = a_0 + b_0 R + c_0 R^2$$
(19)

Un primer ejercicio es el desarrollo de un IV12 que tenga una relación lineal entre a_0 y b_0 y c_0 sea una constante, por lo que estas condiciones pueden ser utilizadas para el índice:

$$IV12_{1} = \frac{aR^{2} + bR - cIRC + d}{eR + f}$$
(20)

a, *b*, *c*, *d*, *e*, *f* constantes

 $El IV12_1$ implica un polinomio como el de la relación (19), con parámetros dados por:

$$\operatorname{IRC} = \left(\frac{d - fIV12_1}{c}\right) + \left(\frac{b - eIV12_1}{c}\right)R + \left(\frac{a}{c}\right)R^2 \qquad (21)$$

Por lo que de acuerdo a la metodología discutida previamente, se puede establecer la relación entre a_0 y b_0 ($c_0 = a/c$) como:

$$b_0 = \left(\frac{fb - ed}{fc}\right) + \left(\frac{ec}{fc}\right) a_0 \tag{22}$$

Dado el objetivo planteado, el IV de la relación (20) es eficaz en lograrlo. Ahora bien, en relación a eficiencia,

las constantes pueden ser establecidas para capturar la esencia de la relación buscada, por lo que se puede hacer c = 1, d = 0 y f = 1, para obtener:

$$b_0 = b + ea_0$$

$$c_0 = a \tag{23}$$

La relación (23) puede ser simplificada a solo dos parámetros si se evalúa la relación de b_0 para el caso límite del suelo desnudo ($b_0 = b_s$ y $a_0 = a_s$), conociendo el parámetro *e*:

$$b = b_S - ea_S \tag{24}$$

Ahora solo se requiere de las constantes e y a; aunque todavía es posible reducirlas si se consideran condiciones limite superiores (reflectancias en el infinito).

Otro índice que además de tener una relación lineal entre a_0 y b_0 , genere una relación lineal (sin constante aditiva) entre a_0 y c_0 es:

$$IV12_{2} = \frac{aR^{2} + bR + c}{dIRC - eR}$$

$$a, b, c, d, e \text{ constantes}$$

$$IRC = \left(\frac{c}{dIV12_{2}}\right) + \left(\frac{b + eIV12_{2}}{dIV12_{2}}\right)R + \left(\frac{a}{dIV12_{2}}\right)R^{2}$$

$$b_{0} = \left(\frac{e}{d}\right) + \left(\frac{b}{c}\right)a_{0}$$

$$c_{0} = \left(\frac{a}{c}\right)a_{0}$$
(25)

Finalmente, además de la relación lineal entre a_0 y b_0 , podemos generar un IV que tenga una relación lineal genérica entre a_0 y c_0 :

$$IV12_3 = \frac{aR^2 + bR - cIRC + d}{eIRC - fR + g}$$

a, *b*, *c*, *d*, *e*, *f*, *g* constantes

$$IRC = \left(\frac{d - gIV12_3}{c + eIV12_3}\right) + \left(\frac{b + fIV12_3}{c + eIV12_3}\right) R + \left(\frac{a}{c + eIV12_3}\right) R^2$$
$$b_0 = \left(\frac{bg - fd}{cg + ed}\right) + \left(\frac{eb - fc}{cg + ed}\right) a_0$$
$$c_0 = \left(\frac{ag}{cg + ed}\right) + \left(\frac{e}{cg + ed}\right) a_0$$
(26)

La parametrización de las relaciones (25) y (26) sigue los mismos pasos que para el caso de las relaciones (22) a (24).

Un procedimiento directo para el diseño de un IV12 es estimar las constantes a_o , b_o y c_o en función de las relaciones entre ellas, similar al caso de la estimación de b_o a partir de su relación con a_o . Para ejemplificar este enfoque, las curvas iso-*IAF* de la Figura 1 fueron parametrizadas con la relación (19), con una curva del suelo con $a_s = 1$, $b_s = 1.5$ y $c_s = 0.002$.

La Figura 15 muestra las relaciones entre b_0 y a_0 ; y c_0 y b_0 , para el caso de $a_0 < 16$ equivalente a $IAF \le 2$ (reflectancias en porcentajes).

La estimación de a_0 puede ser puesta, de la Figura 15, como:

$$\frac{\text{Caso } a_0 \le 16}{a_0 = a + bb_0}$$

$$a_0 = c + d\ln(c_0)$$

$$a, b, c, d \text{ constantes}$$
(27)

por lo que al sustituir las relaciones (27) en la (19) se tiene que:

$$IRC = a_0 + \left(\frac{a_0 - a}{b}\right)R + \exp\left(\frac{a_0 - c}{d}\right)R^2$$
(28)

Las constantes *a* y *c* pueden ser puestas en función de los parámetros de la curva del suelo, por lo que solo se requieren dos parámetros.

Dados el par de valores (*R*, *IRC*), la ecuación (28) puede ser resuelta para a_0 y de las relaciones (27) se puede estimar b_0 y c_0 , por lo que la curva iso-*IAF* queda totalmente definida.

Al igual que la estimación de b_0 usando los patrones bilineales de la Figura 4, podemos definir las relaciones para $a_0 > 16$ (Figura 16) por lo que se tiene:

$$\frac{Caso a_0 > 16}{a_0 = d + eb_0}$$

$$a_0 = f + gc_0$$
(29)

d.e. f. g constantes

Con las nuevas relaciones, la estimación de a_0 se obtiene de:

Figura 15. Relaciones entre b_a y a_a , así como c_a y a_a , para el caso de $a_a \le 16$ ($IAF \le 2$), curvas iso-IAF de la Figura 1.

Figura 16. Relaciones entre b_0 y a_0 , así como c_0 y a_0 , para el caso de $a_0 > 16$ (*IAF* > 2), curvas iso-*IAF* de la Figura 1.

$$IRC = a_0 + \left(\frac{a_0 - d}{e}\right)R + \left(\frac{a_0 - f}{g}\right)R^2$$
(30)

Las constantes d y f pueden ser puestas en función de las reflectancias en el infinito o de los valores asociados a la transición en $a_0 = 16$, por lo que solo se requieren dos parámetros.

DISCUSIÓN Y CONCLUSIONES

- En este trabajo se analizó la estructura matemática (patrones) de un gran número de índices de vegetación (IV) espectrales publicados en la literatura, bajo diferentes transformaciones y modelos de transferencia radiativa en la vegetación, y se expusieron las hipótesis o patrones en estos índices. Así, después del análisis estructural de los índices de vegetación, se concluye que solo un IV de los analizados modela en forma correcta el patrón espectral asociado a las líneas espectrales iso-*IAF* (interacciones de primer orden) para la etapa vegetativa y reproductiva completa del crecimiento de la vegetación. Este índice fue simplificado en un formato del espacio entre los parámetros de las líneas iso-*IAF*, para evitar los problemas de las transformaciones lineales y angulares usadas.

- La metodología planteada para el análisis de los índices de vegetación fue utilizada para el desarrollo de nuevos IV para el caso de interacciones de orden 1 de la banda del rojo y de orden 2 de la banda del infrarrojo cercano; tanto a nivel de enfoques matemáticos indirectos como de modelación directa.

- El procedimiento directo presentado en este trabajo es general para cualquier caso del orden de

las interacciones y si se utiliza patrones por partes (lineales o no lineales); además de considerar el caso de que los parámetros puedan ser definidos empírica o teóricamente.

LITERATURA CITADA

- Bannari, A., A. R. Huete, D. Morin, and F. Zagolski. 1996. Effets de la couleur et de la brillance du sol sur les indices de végétation. Int. J. Remote Sens. 17: 1885-1906.
- Baret, F. and G. Guyot. 1991. Potentials and limits of vegetation Indices for LAI and APAR assessment. Remote Sens. Environ. 35: 161-173.
- Baret, F., G. Guyot, and D. J. Major. 1989. TSAVI: A vegetation index which minimizes soil brightness effects on LAI and APAR estimation. pp: 1355-1358. *In:* Proceedings of IGARSS'89. 12th Canadian Symposium on Remote Sensing. Vancouver, Canada.
- Baret, F., S. Jacquemoud, and J. F. Hanocq. 1983. The soil line concept in remote sensing. Remote Sens. Rev. 7: 65-82.
- Bausch, W. C. 1993. Soil background effects on reflectance based crop coefficients for corn. Remote Sens. Environ. 46: 213-222.
- Chehbouni, A., Y. H. Kerr, J. Qi, A. R. Huete, and S. Sorooshian. 1994. Toward the development of a multidirectional vegetation index. Water Resour. Res. 30: 1281-12860.
- Chen, J. M. 1996. Evaluation of vegetation indices and a modified ratio for boreal applications. Can. J. Remote Sens. 22: 229-242.
- Clevers, J. G. P. W. 1999. The use of imaging spectrometry for agricultural applications. ISPRS J. Photogram. Remote Sens. 54: 299-304.
- Deering, D. W., J. W. Rouse, R. H. Haas, and J. A. Schell. 1975. Measuring "forage production" of grazing units from Landsat MSS data. Proceedings of the 10th International Symposium on Remote Sens. Environ. II. 1169-1178.
- Gao, F., Y. Jin, L. Xiaowen, C. B. Schaaf, and A. H. Strahler. 2002. Bidirectional NDVI and atmospherically resistant BRDF inversion for vegetation canopy. IEEE Trans. Geosci. Remote Sens. 40: 1269-1278.
- Gao, X., A. R. Huete, W. Ni, and T. Miura. 2000. Optical-biophysical relationships of vegetation spectra without background contamination. Remote Sens. Environ. 74: 609-620.

- Gilabert, M. A., J. González-Piqueras, F. J. Garcia-Haro, and J. Meliá. 2002. A generalized soil-adjusted vegetation index. Remote Sens. Environ. 82: 303-310.
- Gitelson, A. A. 2004. Wide dynamic range vegetation index for remote quantification of biophysical characteristics of vegetation. J. Plant Physiol. 161: 165-173
- Gitelson, A. A., Y. J. Kaufman, R. Stark, and D. Rundquist. 2002. Novel algorithms for remote estimation of vegetation fraction. Remote Sens. Environ. 80: 76-87.
- Goel, N. S. 1988. Models of vegetation canopy reflectance and their use in the estimation of biophysical parameters from reflectance data. Remote Sens. Rev. 4: 1-212.
- Goel, N. S. and W. Qi. 1994. Influences of canopy architecture on relationships between various vegetation indices and LAI and Fpar: A computer simulation. Remote Sens. Rev. 10: 309-347.
- Gong, P., R. Pu, G. S. Biging, and M. R. Larrieu. 2003. Estimation of forest leaf area index using vegetation indeces derived from hyperion hyperspectral data. IEEE Trans. Geosci. Remote Sens. 41: 1355-1362.
- Haboudane, D., J. R. Miller, E. Pattey, P. J. Zarco-Tejada, and I. B. Strachan. 2004. Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopies: modeling and validation in the context of precision agriculture. Remote Sens. Environ. 90: 337-352.
- Hardisky, M. S., V. Klemas, and M. Smart. 1983. The influence of soil salinity, growth form, and leaf moisture on the spectral radiance of Spartina alterniflora canopies. Photogram. Engin. Remote Sens. 49: 77-83.
- Huete, A. R. 1988. A soil-adjusted vegetation index (SAVI). Remote Sens. Environ. 25: 295-309.
- Huete, A. R. and R. D Jackson. 1987. Suitability of spectral indices for evaluating vegetation characteristics on arid rangelands. Remote Sens. Environ. 23: 213-232.
- Huete, A. R., C. Justice, and W. van Leeuwen. 1996. MODIS vegetation index (MOD13). EOS MODIS Algorithm Theoretical Basis Document. NASA Goddard Space Flight Center. Greenbelt, MD, USA.
- Huete, A. R., R. D. Jackson, and D. F. Post. 1985. Spectral response of a plant canopy with different soil backgrounds. Remote Sens. Environ. 17: 37-53.
- Jacquemoud, S. and F. Baret. 1990. PROSPECT: A model of leaf optical properties spectra. Remote Sens. Environ. 34: 75-91.
- Jacquemoud, S., C. Bacour, H. Poilvé, and J. P. Frangi. 2000. Comparison of four radiative transfer models to simulate plant canopy reflectance: Direct and inverse mode. Remote Sens. Environ. 74: 471-481.
- Jacquemoud, S., F. Baret, B. Andriew, F. M. Danson, and K. Jaggard. 1995. Extraction of vegetation biophysical parameters by inversion of the PROSPECT + SAIL models on sugar beet canopy reflectance data: application to TM y AVIRIS data. Remote Sens. Environ. 52: 163-172.
- Jiang, Z., A. R. Huete, J. Li, and Y. Chen. 2006. An analysis of angle-based with ratio-based vegetation indices. IEEE Trans. Geosci. Remote Sens. 44: 2506-2513.
- Jiang, Z., A. R. Huete, K. Didan, and T. Miura. 2008. Development of a two-band enhanced vegetation index without a blue band. Remote Sens. Environ. 112: 3833-3845.
- Jiang, Z. and A. R. Huete. 2010. Linearization of NDVI based on its relationship with vegetation fraction. Photogram. Engin. Remote Sens. 76: 965-975.

- Jordan, C. F. 1969. Derivation of leaf-area index from quality of light on the forest floor. Ecology 50: 663-666.
- Karnieli, A., Y. J. Kaufman, L. Remer, and A. Wald. 2001. AFRI: aerosol free vegetation index. Remote Sens. Environ. 77: 10-21.
- Kaufman, Y. J., A. E. Wald, L. A. Remer, B. C. Gao, R. R. Li, and F. Luke. 1997. The MODIS 2.1-µm channel-correlation with visible reflectance for use in remote sensing of aerosol. IEEE Trans. Geosci. Remote Sens. 35: 1286-1298.
- Kaufman, Y. J. and D. Tanre. 1992. Atmospherically resistant vegetation index (ARVI) for EOS-MODIS. IEEE Trans. Geosci. Remote Sens. 30: 261-270.
- Kauth, R. J. and G. S. Thomas. 1976. The tasseled cap-A graphic description of the spectral-temporal development of agricultural crops as seen by Landsat. pp: 41-51. *In:* Proceedings Symposium on Machine Processing of Remotely Sensed Data. Purdue University. West Lafayette, IN, USA.
- Lee, N. J. and K. Nakane. 1997. Forest vegetation classification and biomass estimation based on Landsat TM data in a mountainous region of West Japan. For. Sci. 50: 159-171.
- Liu, H. Q. and A. Huete. 1995. A feedback based modification of the NDVI to minimize canopy background and atmospheric noise. IEEE Trans. Geosci. Remote Sens. 33: 457-465.
- Major, D. J., F. Baret, and G. Guyot. 1990. A ratio vegetation index adjusted for soil brightness. Int. J. Remote Sens. 11: 727-740.
- Malet, Ph. 1996. Classifying the geometry of canopies from time variations of red and near-infrared reflectance. Remote Sens. Environ. 56: 164-171.
- Martin, M. P. y E. Chuvieco. 2001. Propuesta de un nuevo índice para cartografía de áreas quemadas: aplicación a imágenes NOAA-AVHRR y Landsat-TM. Rev. Teledetec. 16: 57-64
- Meza Díaz, B. and G. A. Blackburn. 2003. Remote sensing of mangrove biophysical properties: Evidence from a laboratory simulation of the possible effects of background variation on spectral vegatation indices. Int. J. Remote Sens. 24: 53-73.
- Misra, P. N. and S. G. Wheeler. 1977. Landsat data from agricultural sites-crop signature analysis. Proceedings of the International Symposium on Remote Sens. Environ. 2: 1473-1482.
- Miura, T., A. R. Huete, W. J. D. van Leeuwen, and K. Didan. 1998. Vegetation detection trough smoke-filled AVIRIRS images: An assessment using MODIS band passes. J. Geophys. Res. 103: 32001-32011.
- Musick, H. B. and R. A. Pelletier. 1986. Response of some thematic mapper band ratios to variation in soil water content. Photogram. Engin. Remote Sens. 52: 1661 1668.
- Myneni, R. B. and G. Asrar. 1994. Atmospheric effects and spectral vegetation indices. Remote Sens. Environ. 47: 390-402.
- Myneni, R. B. and J. Ross. 1991. Photon-vegetation interactions: applications in optical remote sensing and plant ecology. Springer-Verlag. Berlin-Heidelberg.
- Myneni, R. B., J. Ross, and G. Asrar. 1989. A review on the theory of photon transport in leaf canopies. Agric. Forest Meteorol. 45: 1-153.
- Odi-Lara, M., F. Paz-Pellat, R. López-Urrea y J. González-Piqueras. 2010. Limitaciones en la estimación de variables biofísicas en cultivos usando índices de vegetación espectrales: efecto de la densidad del follaje. Agrociencia 44: 807- 819.
- Paz, F., E. Romero, E. Palacios, M. Bolaños, R. Valdez, y A. Aldrete. 2014. Alcances y limitaciones de los índices espectrales de la vegetación: marco teórico. Terra Latinoamericana 3: 177-194.

- Paz, F., E. Palacios, M. Bolaños, L. A. Palacios, M. Martínez, E. Mejía y A. Huete. 2007. Diseño de un índice espectral de la vegetación: NDVIcp. Agrociencia 41: 539-554.
- Paz, F., E. Palacios, E. Mejía, M. Martínez y L. A. Palacios. 2006. Determinación del estado del crecimiento de cultivos usando la transformada de Hough de las reflectividades del follaje. Agrociencia 40: 99-108.
- Paz, F., E. Palacios, E. Mejía, M. Martínez y L. A. Palacios. 2005. Análisis de los espacios espectrales de la reflectividad del follaje de los cultivos. Agrociencia 39: 293-301.
- Paz, F., L. A. Palacios, E. Palacios, M. Martínez y E. Mejía. 2003. Un índice de vegetación sin efecto atmosférico: IVPP. pp: 46-51. *In*: A. de Alba, L. Reyes y M. Tiscareño (eds.). Memoria del Simposio Binacional de Modelaje y Sensores Remotos en Agricultura México-USA. INIFAP-SAGARPA, Aguascalientes, México.
- Pearson, R. L. and L. D. Miller. 1972. Remote mapping of standing crop biomass for estimation of the productivity of the shortgrass prairie, Pawnee National Grasslands, Colorado. Pp: 1357-1381. *In:* Proceedings of the 8th International Symposium on Remote Sensing of Environment, ERIM International. Ann Arbor, MI, USA.
- Pinty, B. and M. M. Verstraete. 1992. GEMI: a non-linear index to monitor global vegetation from satellites. Vegetation 101: 15-20.
- Price, J. C. 1990. On the information-content of soil reflectance spectra. Remote Sens. Environ. 33: 113-121.
- Price, J. C. 1992a. Variability of high-resolution crop reflectance spectra. Int. J. Remote Sens. 13: 2593-2610.
- Price, J. C. 1992b. Estimating vegetation amount from visible and near infrared reflectances. Remote Sens. Environ. 41: 29-34.
- Qi, J., A. Chehbouni, A. R. Huete, Y. H. Kerr, and S. Sorooshian. 1994. A modified soil adjusted vegetation index. Remote Sens. Environ. 48: 119-126.
- Richardson, A. J. and C. L. Wiegand. 1977. Distinguishing vegetation from soil background information. Photogram. Engin. Remote Sens. 43: 1541-1552.
- Richardson, A. J. and C. L. Wiegand. 1991. Comparison of two models for simulating the soil vegetation composite reflectance of a developing cotton canopy. Int. J. Remote Sens. 11: 447-459.

- Rock, B. N., J. E. Vogelmann, D. L. Williams, A. F. Vogelman, and T. Hoshizaki. 1986. Remote detection of forest damage. BioScience 36: 439-445.
- Romero E., F. Paz, E. Palacios, M. Bolaños, R. Valdez y A. Aldrete. 2009. Diseño de un índice espectral de la vegetación desde una perspectiva conjunta de los patrones lineales y exponenciales del crecimiento. Agrociencia 43: 291-307.
- Rondeaux, G., M. Steven, and F. Baret. 1996. Optimization of soiladjusted vegetation indices. Remote Sens. Environ. 55: 97-107.
- Ross, J. 1981. The radiation regime and architecture of plant stands. Dr. W. Junk. Norwell, MA, USA.
- Roujean, J. L. and F. M. Breon. 1995. Estimating PAR absorbed by vegetation from bidirectional reflectance measurements. Remote Sens. Environ. 51: 375-384.
- Rouse, J. W., R. H. Haas, J. A. Schell, D. W. Deering, and J. C. Harlan. 1974. Monitoring the vernal advancement and retrogradation (greenwave effect)of natural vegetation. MASA/ GSFC, Type III, Final Report. Greenbelt, MD, USA.
- Schneider, C. A. 1998. Erarbeitung methodischer grundlagen zur erfassung von galeriewäldern in Mittelbrasilien aus satellitendaten. Magister der tropischen forstwirtschaft. Fakultät für Forstwissenschaften. Universität Göttingen, Germany.
- Tucker, C. J. 1979. Red and photographic infrared linear combination for monitoring vegetation. Remote Sens. Environ. 8: 127-150.
- Ünsalan, C. and K. L. Boyer. 2004. Linearized vegetation indices based on a formal statistical framework. IEEE Trans. Geosci. Remote Sens. 42: 1575-1585.
- Verstraete, M. M. and B. Pinty. 1996. Designing optimal spectral indexes for remote sensing applications. IEEE Trans. Geosci. Remote Sens. 34: 1254-1265.
- Weiss, M., F. Baret, R. B. Myneni, A. Pragnere, and Y. Knyazikhin. 2000. Investigation of a model inversion technique to estimate canopy biophysical variables from spectral and directional reflectance data. Agronomie 20: 3-22.
- Yoshioka, H., T. Miura, A. R. Huete, and B. D. Ganapol. 2000. Analysis of vegetation isolines in red-NIR reflectance space. Remote Sens. Environ. 74: 313-326.